欢迎登录材料期刊网

材料期刊网

高级检索

为了研究Ti Si-N薄膜生长过程中界面的形成,采用第一性原理计算了在TiN(001)表面上3N-2Ti-1Si、4N-1Ti-1Si和4N-2Ti-1Si岛的各构型的总能量和吸附能,并且利用推移弹性带(NEB)的方法计算了各岛构型演变过程中所需的迁移激活能.计算结果表明:Ti粒子在岛内的构型是低能量的稳定结构,这种构型是由SiN相从TiN相中分离出来而形成的;在3N-2Ti-1Si、4N-1Ti-1Si和4N-2Ti-1Si 3种构型的演变方式中,3N-2Ti-1Si构型演变所需的激活能较小,更容易实现构型演变;适量地增加N粒子的沉积比例,可以使岛构型演变所需的激活能减小,促进SiN相与TiN相的分离;当N与Ti的粒子数比例达到3∶2时,界面最容易形成.

参考文献

[1] Lu C;Mai Y;Yao G.Recent advances on understanding the origin of superhardness in nanocomposite coatings:A critical review[J].Journal of Materials Science,200641(03):937-950.
[2] Zhang S;Sun D;Fu Y.Ni-toughened nc-TiN/a-SiNx nanocomposite thin films[J].Surface and Coatings Technology,2005200(5-6):1530-1534.
[3] Veprek S.The search for novel,superhard materials[J].Journal of Vacuum Science and Technology A,199917(05):2401-2420.
[4] Veprek S;Niederhofer A;Moto K.Composition,nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a-and nc-TiSi2 nanocomposites with Hv =80 to ≥ 105 GPa[J].Surface and Coatings Technology,2000133-134:152-159.
[5] Veprek S.In handbook of ceramic hard materials[M].Riedel:Wiley-VCH Weinheim,2000:104.
[6] Hao S;Delley B;Stampfl C.Structure and properties of TiN (111)/SixNy/TiN(111) interfaces in superhard nanocomposites:First-principles investigations[J].Physical Review B,200674(03):035402.
[7] Kong M;Zhao W J;Wei L.Investigations on the mierostructure and hardening mechanism of TiN/Si3N4 nano-composite coatings[J].Journal of Physics D:Applied Physics,200740(09):2858-2863.
[8] Hultman L;Bareno J;Flink A.Interface structure in superhard TiN-SiN nanolaminates and nanocomposites:Film growth experiments and ab initio calculations[J].Physical Review B,200775(15):155437.
[9] Zhang R F;Argon A S;Veprek S.Electronic structure,stability,and mechanism of the decohesion and shear of interfaces in superhard nanocomposites and heterostructures[J].Physical Review B,200979(24):245426.
[10] Chung C;Chang C;Chang S C.Evolution of enhanced crystallinity and mechanical property of nanocomposite Ti-Si-N thin films using magnetron reactive co-sputtering[J].Journal of Alloys and Compounds,2012537:318-322.
[11] Zhang R F;Veprek S.On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti-Si-N system[J].Materials Science and Engineering:A,2006424(1-2):128-137.
[12] Zhang R F;Veprek S.Crystalline-to-amorphous transition in Ti1-xSixN solid solution and the stability of fcc SiN studied by combined ab initio density functional theory and thermodynamic calculations[J].Physical Review B,200776(17):4105-4110.
[13] Zhang R F;Veprek S.Phase stabilities of self-organized ncTiN/a-Si3N4 nanocomposites and of Ti1-xSixN solid solutions studied by ab initio calculation and thermodynamic modeling[J].Thin Solid Films,2008516(08):2264-2275.
[14] Liu X J;Zhao L L;Ren Y.The configuration and evolution of Ti-Si-N islandon TiN(001) surface:Ab initio study[J].Advanced Materials Research,2011295-297:301-306.
[15] 刘学杰;吴 帅;任 元.TiN(001)表面上3N1Ti1Si岛构型及其演变的第一性原理研究[J].发光学报,201334(06):723-727.
[16] Liu X J;Lu F;Wu S.Effects of different nitrogen-to-titanium atomic ratios on the evolution of Ti-Si-N islands on TiN(001) surfaces:First-principle studies[J].Journal of Alloys and Compounds,2014586:431-435.
[17] Kresse G;Hafner J.Ab initio molecular dynamics for liquid metals[J].Physical ReviewB,199347(01):558-561.
[18] Kresse G;Hafner J.Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J].Physical Review B,199449(20):14251-14269.
[19] Kresse G;Furthmüller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Physical ReviewB,199654(16):11169-11186.
[20] Kresse G;Furthmüller J.Efficiency of ab initio total energy calculations for metals and semiconductors using aplane-wave basis set[J].Computational Materials Science,19966(01):15-50.
[21] Kresse G;Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method[J].Physical Review B,199959(03):1758-1775.
[22] Vanderbilt D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J].Physical Review B,199041(11):7892-7895.
[23] Perdew J P;Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy[J].Physical Review B,199245(23):13244-13249.
[24] Hendrik J;Monkhorst and James D P.Special points for Brillouin-zone integrations[J].Physical Review B,197613(12):5188-5192.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%