欢迎登录材料期刊网

材料期刊网

高级检索

采用共沉淀法制备出TiO2-ZrO2复合氧化物载体,然后用分步浸渍法制备出K/Pt/TiO2-ZrO2催化剂,考察了载体焙烧温度对催化剂结构和储存氮氧化物性能的影响. X射线衍射结果表明, 500 ℃焙烧载体后催化剂样品为无定形结构, 650 ℃焙烧时开始出现ZrTiO4晶体,并随焙烧温度提高晶形越来越好. NH3程序升温脱附结果表明, 500 ℃焙烧的载体有最大的酸量,但随焙烧温度升高,酸量显著下降, 1 000 ℃焙烧后,载体基本无酸性. 比表面积和Nox储存量测定结果表明,样品对Nox的储存能力与比表面积之间无顺变关系,载体于500 ℃焙烧的样品对Nox的储存性能最差,而于800 ℃焙烧的样品储存性能最佳. 原位漫反射傅里叶变换红外光谱结果表明,载体于500 ℃焙烧的样品中Nox以自由NO-3以及单齿或双齿硝酸根离子的形式存在,而在其它温度焙烧时,只检测到自由的NO-3物种. 焙烧温度不仅影响载体的结构和酸碱性,而且影响载体与负载组分间的相互作用,载体表面羟基与K2CO3相互作用形成稳定的- OK 基团对Nox储存不利,而高分散的K2CO3相则有利于将Nox物种以硝酸盐的形式储存起来.

参考文献

[1] Heck R M;Farrauto R J.Catalytic Air Pollution Control[M].New York:Van Nostrand Reinhold Company Inc,1995:106.
[2] US Environmental Protection Agency .Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements[EPA420-F-00-057.Washington D C][R].,2000.
[3] Bgner W;Krmer M;Krutzsch B;Pischinger S Voigtlnder D Wenninger G Wirbeleit F Brogan M S Brisley R J Webster D E .[J].Applied Catalysis B:Environmental,1995,7(1-2):153.
[4] Matsumoto S.;Suzuki H.;Ogai M.;Miyoshi N.;Ikeda Y. .NOx storage reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2000(2/3):115-124.
[5] Takahashi N;Shinjoh H;Iijima T;Suzuki T Yamazaki K Yokota K Suzuki H Miyoshi N Matsumoto S Tanizawa T Tanaka T Tateishi S Kasahara K .[J].Catalysis Today,1996,27(1-2):63.
[6] Li X G;Meng M;Lin P Y;Fu Y L Hu T D Xie Y N Zhang J .[J].Topics in Catalysis,2003,22(1-2):111.
[7] Li X G;Meng M;Lin P Y;Fu Y L Hu T D Xie Y N Zhang J .[J].Chemical engineering Research and Design,2002,80(A2):190.
[8] 李新刚,孟明,林培琰,陈加福,伏义路,俞寿明,谢亚宁,胡天斗.Co助剂对稀燃NOx阱Pt/Ba-Al-O结构和性能的影响[J].催化学报,2002(05):417-420.
[9] Suzuki H;Muramoto R;Takahashi N .[J].Toyota Tech Rev,1996,46(02):68.
[10] Iwachido K;Tanada H;Watanabe T;Yamada N,Nakayama O,Ando H,Hori M,Taniguchi S,Noda N,Abe F .[R].SAE,2001.
[11] Machida M;Ikeda S;Kurogi D;Kijima T .[J].Applied Catalysis B:Environmental,2001,35(02):107.
[12] Mariscal R;Rojas S;Gómez-Cortés A;Díaz G Pérez R Fierro J L G .[J].Catalysis Today,2002,75(1-4):385.
[13] Kintaichi Y;Haneda M;Inaba M;Hamada H .[J].Catalysis Letters,1997,48(1-2):121.
[14] Takahashi N;Suda A;Hachisuka I;Sugiura M Sobukawa H Shinjoh H .[J].Applied Catalysis B:Environmental,2006,72(1-2):187.
[15] Reddy B M;Ganesh I;Chowdhury B .[J].Catalysis Today,1999,49(1-3):115.
[16] Daly F P;Ando H;Schmitt J L;Sturm E A .[J].Journal of Catalysis,1987,108(02):401.
[17] Reddy BM;Khan A .Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst supports[J].Catalysis Reviews. Science and Engineering,2005(2):257-296.
[18] Tanabe K;Sumiyoshi T;Shibata K .[J].Bulletin of the Chemical Society of Japan,1974,47(05):1064.
[19] Wu J-C;Chung C-S;Ay C-L;Wang I .[J].Journal of Catalysis,1984,87(01):98.
[20] Toops TJ;Smith DB;Epling WS;Parks JE;Partridge WP .Quantified NO(x)adsorption on Pt/K/gamma-Al2O3 and the effects of CO2 and H2O[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2005(3/4):255-264.
[21] Hadjiivanov K;Bushev V;Kantcheva M;Klissurski D .[J].LANGMUIR,1994,10(02):464.
[22] Krupay B W;Amenomiya Y .[J].Journal of Catalysis,1981,67(02):362.
[23] Kantschewa M;Albano E V;Etrl G;Knzinger H .[J].Applied Catalysis,1983,8(01):71.
[24] Amenomiya Y;Pleizier G .[J].Journal of Catalysis,1982,76(02):345.
[25] Axelsson O;Shao Y;Paul J;Hoffmann F M .[J].Journal of Physical Chemistry,1995,99(18):7028.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%