欢迎登录材料期刊网

材料期刊网

高级检索

采用纳米压痕技术和原子力显微镜对铱(Ir)单晶(100)和(110)取向的载荷-位移曲线、弹性模量、压痕形貌、压痕硬度-加载深度等进行了研究。结果表明,Ir(100)与Ir(110)单晶的弹性模量分别为477和493 GPa;加载深度为10~2500 nm时,Ir单晶的纳米压痕硬度存在压痕尺寸效应,在10~500 nm 时表现更为强烈,表明随着加载深度的增加,单晶材料的硬度减小;基于 Nix-Gao 模型,计算出Ir(100)和Ir(110)单晶的纳米硬度H0分别为2.32和2.46 GPa,当加载深度分别大于4910和5220 nm时,Ir单晶的纳米硬度不存在尺寸效应,可作为金属铱硬度测试的重要依据;采用硬度和深度的幂律关系计算出Ir(100)和Ir(110)单晶的尺寸效应因子(m)分别为0.44和0.48,该值远远大于其他金属和半导体材料,这种反常现象可能与铱原子间的异常强的交互作用有关。

Load-depth curves, elastic modulus, indentation morphology as well as the relationship between nanohardness and indent depth of (110) and (100) oriented iridium single crystals were investigated via nanoindentation technique and atomic force microscopy (AFM). The results indicate that the elastic modulus of Ir(100) and Ir(110) is 477 GPa and 493 GPa, respectively. The indentation size effect (ISE) is observed over the entire range of indentation depths 10~2500 nm, particularly for the depth in the range of 10~500 nm. Based on Nix-Gao model, the calculated nanohardness (H0) of Ir(100) and Ir(110) is 2.32 and 2.46 GPa, respectively, which is defined as the ISE disappeared. There is no ISE can be observed on Ir(100) and Ir(110) as the penetrating depth more than about 4910 and 5220 nm, respectively. By means of power law, the ISE factor (m) of Ir(110) and Ir(100) are calculated as 0.48 and 0.44, respectively, which are much greater than those of other metallic and semi-metallic materials. This anomaly may be associated with abnormally strong interactions between atoms of iridium.

参考文献

[1] George M. Pharr;Erik G. Herbert;Yanfei Gao.The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations[J].Annual review of materials research,2010:271-292.
[2] Huang Y.;Qu S.;Hwang KC.;Li M.;Gao H..A conventional theory of mechanism-based strain gradient plasticity[J].International Journal of Plasticity,20044-5(4-5):753-782.
[3] Uchic MD;Dimiduk DM;Florando JN;Nix WD.Sample dimensions influence strength and crystal plasticity[J].Science,20045686(5686):986-989.
[4] Ma Q.;Clarke DR..SIZE DEPENDENT HARDNESS OF SILVER SINGLE CRYSTALS[J].Journal of Materials Research,19954(4):853-863.
[5] J.G. Swadener;E.P. George;G.M. Pharr.The correlation of the indentation size effect measured with indenters of various shapes[J].Journal of the Mechanics and Physics of Solids,20024(4):681-694.
[6] Atkinson M..FURTHER ANALYSIS OF THE SIZE EFFECT IN INDENTATION HARDNESS TESTS OF SOME METALS[J].Journal of Materials Research,199511(11):2908-2915.
[7] W. J. Poole;M. F. Ashby;N. A. Fleck.Micro-hardness of annealed and work-hardened copper polycrystals[J].Scripta materialia,19964(4):559-564.
[8] McElhaney KW.;Nix WD.;Vlassak JJ..Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments[J].Journal of Materials Research,19985(5):1300-1306.
[9] S.Suresh;T.G.Nieh.Nano-indentation of copper thin films on silicon substrates[J].Scripta materialia,19999(9):951-957.
[10] Ranjana Saha;Zhenyu Xue;Young Huang.Indentation of a soft metal film on a hard substrate: strain gradient hardening effects[J].Journal of the Mechanics and Physics of Solids,20019(9):1997-2014.
[11] N. I. TYMIAK;D. E. KRAMER;D. F. BAHR.PLASTIC STRAIN AND STRAIN GRADIENTS AT VERY SMALL INDENTATION DEPTHS[J].Acta materialia,20016(6):1021-1034.
[12] K. Durst;O. Franke;A. Bohner.Indentation size effect in Ni-Fe solid solutions[J].Acta materialia,200720(20):6825-6833.
[13] Jae-il Jang;Byung-Gil Yoo;Yong-Jae Kim.Indentation size effect in bulk metallic glass[J].Scripta materialia,20118(8):753-756.
[14] W.G. Mao;Y.G. Shen;C. Lu.Deformation behavior and mechanical properties of polycrystalline and single crystal alumina during nanoindentation[J].Scripta materialia,20112(2):127-130.
[15] Nix WD.;Gao HJ..Indentation size effects in crystalline materials: A law for strain gradient plasticity[J].Journal of the Mechanics and Physics of Solids,19983(3):411-425.
[16] N. Van Steenberge;J. Sort;A. Concustell.Dynamic softening and indentation size effect in a Zr-based bulk glass-forming alloy[J].Scripta materialia,20077(7):605-608.
[17] Cawkwell, MJ;Nguyen-Manh, D;Woodward, C;Pettifor, DG;Vitek, V.Origin of brittle cleavage in iridium[J].Science,20055737(5737):1059-1062.
[18] 刘毅;张洞川;陈家林;吴霏;罗锡明;陈登权.铱片的显微组织与室温拉伸断裂机制研究[J].贵金属,2015(3):42-48.
[19] Y. Wang;D. Raabe;C. Kluber.Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals[J].Acta materialia,20048(8):2229-2238.
[20] Alcala J.;Barone A.C..THE INFLUENCE OF PLASTIC HARDENING ON SURFACE DEFORMATION MODES AROUND VICKERS AND SPHERICAL INDENTS[J].Acta materialia,200013(13):3451-3464.
[21] I. Manika;J. Maniks.Size effects in micro- and nanoscale indentation[J].Acta materialia,20068(8):2049-2056.
[22] Yu.V. Milman;A.A. Golubenko;S.N. Dub.Indentation size effect in nanohardness[J].Acta materialia,201120(20):7480-7487.
[23] Gornostyrev YN.;Medvedeva NI.;Mryasov ON.;Freeman AJ. Trefilov AV.;Katsnelson MI..Peculiarities of defect structure and mechanical properties of iridium: Results of ab initio electronic structure calculations[J].Physical Review.B.Condensed Matter,200012(12):7802-7808.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%