欢迎登录材料期刊网

材料期刊网

高级检索

目的:通过等离子表面合金化渗锆,提高Ti-6 Al-4 V的表面硬度及在还原性酸中的耐蚀性能。方法分别在800,850,900℃渗锆,分析研究锆合金层的成分、相组成、显微硬度及在为10%(质量分数)H2SO4溶液中的腐蚀行为,并与未处理的基材进行对比。结果 Ti-6Al-4V在三种温度下渗锆后,形成的表面合金层主要由锆在α-Ti或β-Ti中形成的固溶体组成,元素组成呈梯度分布,表面粗糙度随渗锆温度的提高而增加,硬度由表及里呈梯度下降,表面硬度比未处理的Ti-6 Al-4 V提高了约200 HV0.1。与未处理的基材相比,Ti-6Al-4V渗锆后,在10%H2 SO4溶液中的自腐蚀电位均正移,钝化电流密度均有所减小。结论 Ti-6 Al-4 V渗锆后,硬度和耐蚀性较基体有所提高,其中,900℃渗锆后的耐蚀性最好,800℃与850℃渗锆试样的耐蚀性次之。

Objective To improve the surface hardness and corrosion resistance of the Ti-6Al-4V in reducing acid solution by plasma surface zirconium alloying. Methods The chemical composition, phase structure and micro-hardness of the Zr-alloyed layer obtained at 800 ℃, 850 ℃ and 900 ℃ were studied. The electrochemical behaviors of alloyed and untreated matrix in 10 %H2 SO4 solution were also studied. Results The alloyed layers formed at three different temperatures exhibited a gradient composi-tion and mainly consisted of α( Ti, Zr) andβ( Ti, Zr) . The surface roughness of Zr-alloyed alloy increased with alloying tempera-ture. The hardness of the alloyed layer was increased by about 200HV0. 1 compared with untreated Ti-6Al-4V and was gradually decreased along the alloyed depth. The corrosion potential of the alloyed layer shifted markedly to positive direction in contrast to the untreated matrix, while the passivation current density was decreased. Conclusion The micro-hardness and the corrosion resis-tance of Zr-alloyed Ti-6Al-4V were improved compared with the untreated titanium alloy. Among the temperatures tested, the cor-rosion resistance of the alloyed layer treated at 900 ℃ was the best, followed by the alloyed layer treated at 800 ℃ and 850 ℃.

参考文献

[1] 杨闯,马亚芹,王亮.TC4钛合金真空脉冲渗氧硬化层的组织与性能[J].表面技术,2013(03):38-41.
[2] 田晓东,王利捷,郑文鹏.TC4钛合金表面辉光离子渗Mo渗S复合处理涂层的组织和摩擦学性能[J].表面技术,2013(02):4-6.
[3] C. B. Mello;M. Ueda;M. M. Silva;H. Reuther;L. Pichon;C. M. Lepienski .Tribological effects of plasma immersion ion implantation heating treatments on Ti-6Al-4V alloy[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2009(Pt.2):867-873.
[4] TIAN Y S;CHEN C Z;CHEN L B et al.Wear Properties of Alloyed Layers Produced by Laser Surface Alloying of Pure Titanium with B4 C and Ti Mixed Powders[J].Journal of Materials Science,2005,40:4387-4390.
[5] BUDINSKI K G .Tribological Properties of Titanium Alloys[J].WEAR,1991,151:203-217.
[6] WANG Z X;HE Z Y;WANG Y Q et al.Microstructure and Tribological Behaviors of Ti6Al4V Alloy Treated by Plasma Ni Alloying[J].Applied Surface Science,2011,257:10267-10272.
[7] 吴进明,早川聡,都留寛治,尾坂明義.钛金属表面生物陶瓷涂层研究的现状[J].硅酸盐学报,2003(07):692-697.
[8] 李文梅;何家文 .气相沉积TiN和Ti(C,N)镀层的热磨损性能[J].摩擦学报,1994,14(03):205-212.
[9] Khan MA.;Williams DF.;Williams RL. .IN-VITRO CORROSION AND WEAR OF TITANIUM ALLOYS IN THE BIOLOGICAL ENVIRONMENT[J].Biomaterials,1996(22):2117-2126.
[10] DANIELLE Q;MARTINS;WISLEI R et al.Effects of Zr Content on Microstructure and Corrosion Resistance of Ti-30Nb-Zr Castings Alloys for Biomedical Applications[J].Electrochimica Acta,2008,53:2809-2817.
[11] 徐江,谢锡善,徐重.双层辉光离子渗Ni-Cr-Mo-Cu合金的工艺[J].北京科技大学学报,2002(06):623-626.
[12] 包永千.金属学基础[M].北京:冶金工业出版社,1986
[13] RIISING J;HERZIG C.Concentration and Temperature De-pendence of Titanium Self-diffusion and Inter Diffusion in the Intermetallic Phase Ti3Al[J].Intermetallics,1996(04):647-657.
[14] 长崎诚三;平林真.二元合金状态图集[M].北京:冶金工业出版社,2004
[15] 余永宁.金属学原理[M].北京:冶金工业出版社,2005
[16] 胡赓祥;蔡珣;戎咏华.材料科学基础[M].上海:上海交通大学出版社,2010
[17] 杨德钧;沈卓身.金属腐蚀学[M].北京:冶金工业出版社,2003
[18] 王伟伟,孙腾,侯健.5083铝合金在模拟淡海水中的电化学行为研究[J].装备环境工程,2012(01):10-12,45.
[19] 王善作 .锆---大有前途的优异耐腐蚀材料[J].稀有金属,1982,6(02):75-80.
[20] 刘世念,苏伟,魏增福,杨海洋,黄桂桥,张波.碳钢在自然海水和灭菌海水中的腐蚀行为分析[J].装备环境工程,2013(04):16-19.
[21] 余存烨.锆与钛耐蚀性比较及应用互补性[J].腐蚀与防护,2007(05):223-226,245.
[22] 朱祖芳.有色金属的耐腐蚀性及其应用[M].北京:化学工业出版社,1995
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%