欢迎登录材料期刊网

材料期刊网

高级检索

柱状晶向等轴晶转变(CET)的研究具有重要意义,数值模拟是其有效的研究方法之一.重点介绍了3种CET转变数值模拟模型--确定性模型、随机性模型和相场模型.指出了各种模型目前在该领域应用中存在的问题,并展望了其今后的发展方向.

参考文献

[1] Hunt J D .Steady state columnar and equiaxed growth of dendrites and eutectic[J].Materials Science and Engineering,1984,65(01):75.
[2] Wang C Y;Beckermann C .Prediction of columnar to equiaxed transition during diffusion-controlled dendritic alloy solidification[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,1993,25A:1081.
[3] Gandin Ch A .From constrained to unconstrained growth during directional solidification[J].Acta Metallurgica,2000,48:2483.
[4] Ares A E et al.Analysis of solidification parameters during solidification of lead and aluminum base alloys[J].Journal of Crystal Growth,2005,275:e319.
[5] Reinhart G et al.Investigation of columnar-equiaxed transition and equiaxed growth of aluminium based alloys by X-ray radiography[J].Materials Science and Engineering A,2005,413-414:384.
[6] Nguyen-thi H et al.In-situ and real-time investigation of columnar-to-equiaxed transition in metallic alloy[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,2007,38A:1458.
[7] Ares A E;Schvezov C E .Influence of solidification thermal parameters on the columnar-to-equiaxed transition of aluminum-zinc and zinc-aluminum alloys[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,2007,38A:1485.
[8] 张宙庆,张国伟,侯华,徐宏.铸件凝固过程的微观组织数值模拟研究进展[J].华北工学院学报,2004(05):386-390.
[9] Martorano M A;Beckermann C;Gandin Ch A .A solutal interaction mechanism for the columnar-to-equiaxed transition in alloy solidification[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,2003,34A:1657.
[10] Wu M;Ludwig A .A three-phase model for mixed columnar-equiaxed solidification[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,2006,37A:1613.
[11] Wu M;Ludwig A .Using a three-phase deterministic model for the columnar-to-equiaxed transition[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,2007,38A:1465.
[12] Wang C Y;Beckermann C .Equiaxed dendritic solidification with convection multistage/multiphase modeling[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,1996,27A:2754.
[13] Wang C Y;Beckermarm C .Equiaxed dendritic solidification with convection numerical simulation for an Al-4wt% Cu alloy[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,1996,27A:2765.
[14] Wang C Y;Beckermarm C .Equiaxed dendritic solidiflcation with convection comparisons with NH4Cl-H2O experiments[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,1996,27A:2784.
[15] Ludwig A;Wu M .Modeling the columnar-to-equiaxed transition with a three-phase Eulerian approach[J].Materials Science and Engineering A,2005,413-414:109.
[16] Ludwig A et al.A way of coupling ternary phase diagram information with multiphase solidification simulations[J].Materials Science and Engineering A,2005,413-414:485.
[17] Wu M;Ludwig A .On the impact of macroscopic phase sep aration on solidification microstructures[J].Advanced Engineering Materials,2005,7:846.
[18] Rappaz M;Gandin Ch A .Probabilistic modelling of microstructure formation in solidification processes[J].Acta Metallurgica,1993,41:345.
[19] Rappaz M;Charbon Ch;Sasikumar R .About the shape of eutectic grains solidifying in a thermal gradient[J].Acta Metallurgica,1994,42:2365.
[20] Gandin Ch A;Rappaz M;Tintillier R .Three-dimensional probabilistic simulation of solidification grain structures:Application to superalloy precision castings[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,1993,24A:467.
[21] Gandin Ch A;Rappaz M;Tintillier R .3-dimensional simulation of the grain formation in investment castings[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,1994,25A:629.
[22] zeekermann C .Modeling segregation and grain structure development in equiaxed solidification[J].Journal of the Minerals,Metals & Materials Society,1997,49:13.
[23] LAZARO BELTRAN-SANCHEZ;DORU M. STEFANESCU .Growth of Solutal Dendrites: A Cellular Automaton Model and Its Quantitative Capabilities[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2003(2):367-382.
[24] Liu Dongrong et al.Modelling of solidification of Ti-45 at%Al alloy ingot by the stochastic model[J].Journal of Materials Science,2005,40:6071.
[25] Gandin Ch A;Rappaz M .A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[J].Acta Metallurgica,1994,42:2233.
[26] Vandyoussefi M;Greer A L .Application of cellular automaton finite element model to the grain refnement of directionally solidified Al-4.15wt% Mg alloys[J].Acta Materials,2002,50:1693.
[27] Spittle JA.;Brown SGR. .A CELLULAR AUTOMATON MODEL OF STEADY-STATE COLUMNAR-DENDRITIC GROWTH IN BINARY ALLOYS[J].Journal of Materials Science,1995(16):3989-3994.
[28] Brown SGR. .Simulation of diffusional composite growth using the cellular automaton finite difference (CAFD) method[J].Journal of Materials Science,1998(19):4769-4773.
[29] Jarvis D J;Brown S G R .Modelling of non-equilibrium solidification in ternary alloys:comparison of 1D,2D,and3D cellular automaton-finite difference simulations[J].Materials Science and Technology,2000,16:1420.
[30] Dong HB;Yang XL;Lee PD;Wang W .Simulation of equiaxed growth ahead of an advancing columnar front in directionally solidified Ni-based superalloys[J].Journal of Materials Science,2004(24):7207-7212.
[31] Dong HB;Lee PD .Simulation of the columnar-to-equiaxed transition in directionally solidified Al-Cu alloys[J].Acta materialia,2005(3):659-668.
[32] Liu D R et al.Stochastic modeling of columnar-to-equiaxed transition in Ti-(45~48at%)Al alloy ingots[J].Materials Science and Engineering A,2006,415:184.
[33] 张国伟,侯华,徐宏.铸件凝固组织数值模拟研究进展[J].材料导报,2004(10):6-9.
[34] Boettinger W J;Warren J A;Beckermann C et al.Phasefield simulation of solidification[J].Annual Review of Materials Research,2002,32:163.
[35] Li Qiang,Guo Qiao-Yi,Li Rong-De.Numerical simulation of dendrite growth and microsegregation formation of binary alloys during solidification process[J].中国物理(英文版),2006(04):778-791.
[36] Badillo A;Beckermann C .Phase-field simulation of columnar-to-equiaxed transition in alloy solidification[J].Acta Materials,2006,54:2015.
[37] Karma A. .Phase-field formulation for quantitative modeling of alloy solidification - art. no. 115701[J].Physical review letters,2001(11):5701-0.
[38] Echebarria B;Folch R;Karma A;Plapp M .Quantitative phase-field model of alloy solidification[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2004(6 Pt.1):1604-1-1604-22-0.
[39] Ralnirez J C;Beckermann C .Examination of binary alloy free dendritic growth theories with a phase-field model[J].Acta Materials,2005,53:1721.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%