{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"淀粉是一种来源广泛、价格低廉、可再生、可降解的生物大分子,其结构、性能和应用研究受到了人们关注.主要综述了近几年来增塑剂、相容剂、交联剂和增强剂对淀粉的改性及该类材料在医药、包装、阻燃等领域的应用与研究前景.","authors":[{"authorName":"刘娅梅","id":"cc85134b-eed5-4563-8531-d437fbca0e39","originalAuthorName":"刘娅梅"},{"authorName":"周贵凤","id":"b6c724c8-5316-4ce1-997f-32059dd2db2b","originalAuthorName":"周贵凤"},{"authorName":"李超","id":"9ceb1f22-3c6b-4b0a-818c-c64a14a62bd8","originalAuthorName":"李超"},{"authorName":"邓灿新","id":"72cd6893-65dc-4b84-89bc-70fffb738bdf","originalAuthorName":"邓灿新"},{"authorName":"曾仁权","id":"786bda6a-1685-433a-b328-0ebe1fa5fd93","originalAuthorName":"曾仁权"},{"authorName":"杨新斌","id":"a7f9702a-0e62-4d0a-860b-c94b4ebe1936","originalAuthorName":"杨新斌"}],"doi":"10.11896/j.issn.1005-023X.2015.017.014","fpage":"73","id":"c22608f2-f958-481a-b943-68240dc1cf88","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"061e7c3c-844d-4876-8392-9af49d08b4f7","keyword":"淀粉材料","originalKeyword":"淀粉材料"},{"id":"d3a64ee1-2f0e-4859-8644-fd39e5fbc5a8","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"d28381c6-0623-4335-b757-c3b994768674","keyword":"改性","originalKeyword":"改性"}],"language":"zh","publisherId":"cldb201517014","title":"淀粉材料的改性与应用","volume":"29","year":"2015"},{"abstractinfo":"主要综述了国外可降解环保型淀粉发泡材料的研究现状,阐述了淀粉挤出发泡和烘焙发泡以及淀粉基聚氨酯泡沫塑料的最新研究进展.同时也概述了超临界熔体挤出法应用于淀粉发泡的最新研究成果和淀粉发泡过程的模型建立,为淀粉发泡材料的进一步工业化应用提供了一定的参考.","authors":[{"authorName":"周建","id":"3bc620ce-f3be-4d86-a1d4-3eb3ce28a7bb","originalAuthorName":"周建"},{"authorName":"罗学刚","id":"29e4f7d7-1888-45e3-9c02-e55ae945caa8","originalAuthorName":"罗学刚"}],"doi":"","fpage":"64","id":"33498b25-7762-49d6-bb79-ed06052ec1ba","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b0d840e0-47aa-4a61-9f66-d9eca41f0c03","keyword":"淀粉","originalKeyword":"淀粉"},{"id":"9a29f12a-0e18-43da-9daf-416db54f0e54","keyword":"降解","originalKeyword":"降解"},{"id":"76756ce7-3785-4d0e-9edd-e7d3a6a970d0","keyword":"发泡","originalKeyword":"发泡"},{"id":"b0a97409-1f39-41f0-ad08-3c7778067907","keyword":"超临界熔体","originalKeyword":"超临界熔体"},{"id":"f1c72f17-b95b-42b8-804e-0229c7d5f8c7","keyword":"模型","originalKeyword":"模型"},{"id":"a05ca828-466d-42ee-9da8-f51b744bef19","keyword":"研究进展","originalKeyword":"研究进展"}],"language":"zh","publisherId":"cldb200610017","title":"国外可降解淀粉发泡材料最新研究进展","volume":"20","year":"2006"},{"abstractinfo":"将聚乙烯醇(PVA)、淀粉、增塑剂在Hakke流变仪中共混制备了热塑性淀粉/PvA材料,研究了2种PVA-PVA1799、PVA1788,2种淀粉-玉米淀粉、木薯淀粉的热塑性情况;比较了甘油、乙二醇、乙酰胺3种增塑剂的增塑效果.结果表明:采用合适的增塑剂与适当的PVA、淀粉组合可以使PVA/淀粉共混体系在高温下热塑成型;乙酰胺能跟PVA和淀粉形成很强的氢键,具有明显的增塑作用,使淀粉/PVA充分塑化,并保持较好的力学性能.","authors":[{"authorName":"周向阳","id":"7010bb39-191b-4d9b-a4a1-32a6d6ecea1a","originalAuthorName":"周向阳"},{"authorName":"贾德民","id":"8b2ca610-1a0b-4dbb-97d0-1360df1c4502","originalAuthorName":"贾德民"},{"authorName":"崔跃飞","id":"a2baab3a-4f71-429f-98f2-179a57d7c946","originalAuthorName":"崔跃飞"},{"authorName":"严志云","id":"1aa2625c-f900-4b72-8f8a-13fd75ea91bd","originalAuthorName":"严志云"}],"doi":"10.3969/j.issn.1671-5381.2011.03.001","fpage":"1","id":"bb8481c4-24d1-4e1b-a2af-7eadd69f4e88","issue":"3","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"6c117f8d-0af3-4e41-a3fd-132beddeda61","keyword":"淀粉","originalKeyword":"淀粉"},{"id":"416d4890-989c-4113-8ed6-1f653a99c332","keyword":"PVA","originalKeyword":"PVA"},{"id":"0437055f-6237-450f-9186-6a2669a163ae","keyword":"增塑剂","originalKeyword":"增塑剂"},{"id":"4a59b614-72f9-4daa-b440-f0e6ead4a8dc","keyword":"热塑性","originalKeyword":"热塑性"}],"language":"zh","publisherId":"hccllhyyy201103001","title":"淀粉/PVA生物降解材料的热塑性研究","volume":"40","year":"2011"},{"abstractinfo":"分别以水和丙三醇作为淀粉的增塑剂,研究了它们对淀粉热塑性加工工艺参数的影响,比较了所得材料的力学性能,表征了材料加工前后的聚集态结构.并给出了一个淀粉在加工过程中受热、剪切及增塑剂作用的模型.","authors":[{"authorName":"益小苏","id":"25342a3b-742c-4143-8b78-cef0ca365642","originalAuthorName":"益小苏"},{"authorName":"石小英","id":"0a330a44-6c19-4757-892d-c3a981c489ec","originalAuthorName":"石小英"}],"categoryName":"|","doi":"","fpage":"263","id":"17d5bc21-0ccf-4761-ae53-c01ccd4aab72","issue":"3","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"ad01f6d6-db4e-4f2e-83a7-364799f17dcc","keyword":"热塑性淀粉","originalKeyword":"热塑性淀粉"},{"id":"8eb76d6e-18e3-4a83-8021-e654fed14a92","keyword":"thermoplastic process","originalKeyword":"thermoplastic process"},{"id":"2698682b-34c4-4756-89eb-c9f9050f7850","keyword":" mechanical properties","originalKeyword":" mechanical properties"},{"id":"492f8a35-f0b9-44c2-831d-434e9f787f56","keyword":" aggregate structure","originalKeyword":" aggregate structure"}],"language":"zh","publisherId":"1005-3093_1995_3_7","title":"热塑性淀粉材料的制备及其性能","volume":"9","year":"1995"},{"abstractinfo":"热塑性淀粉具有完全可生物降解的特性,成为近年来环保领域的重要研究方向之一.介绍了几种常见淀粉的微观形貌,重点阐述了热塑性淀粉和其它合成聚合物复合体系的研究现状,总结了热塑性淀粉与天然聚合物复合体系新进展,最后提出了该材料的发展趋势.","authors":[{"authorName":"黄明福","id":"33c9c0b2-acaa-49f0-99fa-05ea8d0c5f76","originalAuthorName":"黄明福"},{"authorName":"王洪媛","id":"367214ec-a953-4e7c-a168-d59e8f004f5a","originalAuthorName":"王洪媛"},{"authorName":"马骁飞","id":"31d2c833-5e39-4d3e-854b-c96245993eae","originalAuthorName":"马骁飞"},{"authorName":"于九皋","id":"cb37a5f2-dcc3-4b4f-8094-01bb1c08d470","originalAuthorName":"于九皋"}],"doi":"","fpage":"60","id":"45f4fba3-17ed-404a-80eb-3c49225c9712","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f974d9b7-8635-468e-bdee-f202c0661747","keyword":"生物降解","originalKeyword":"生物降解"},{"id":"8dc2e046-d504-4a44-9097-2cfbe6adc751","keyword":"淀粉","originalKeyword":"淀粉"},{"id":"e5976694-c9f7-4116-9bf7-4c7f7badcfa0","keyword":"聚合物","originalKeyword":"聚合物"},{"id":"3340b735-635c-4065-8e8b-4a0161b1b672","keyword":"环保材料","originalKeyword":"环保材料"}],"language":"zh","publisherId":"cldb200603016","title":"热塑性淀粉基生物分解材料研究进展","volume":"20","year":"2006"},{"abstractinfo":"将热塑性淀粉(淀粉与甘油的质量比3∶1)与低熔点共聚酰胺以不同的比例共混挤出,得到增强的热塑性淀粉材料.性能测试结果表明,共混物各组分间有较好的相容性,共聚酰胺对热塑性淀粉材料具明显的增强作用.经热水浸泡后,共混物的保留强度与单纯热塑性淀粉相比均有不同程度的提高,尤其共聚酰胺含量大于30%时,耐水性显著提高.通过流变性能分析,共聚酰胺的加入使流动活化能下降,增加了共混物的流动性.","authors":[{"authorName":"于九皋","id":"0a435181-1170-4a8a-861d-2f9e3c6045fe","originalAuthorName":"于九皋"},{"authorName":"刘泽华","id":"65d03628-9039-4d2f-a9d4-3f95454552e0","originalAuthorName":"刘泽华"}],"doi":"","fpage":"212","id":"423f3674-35cc-4836-8bcc-b3e58f8e4ebc","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"e8d5aab1-72d9-40ce-aa81-f6836efe46a3","keyword":"热塑性淀粉","originalKeyword":"热塑性淀粉"},{"id":"7db11067-eba1-4a3f-b8cf-27a13159ebbf","keyword":"共聚酰胺","originalKeyword":"共聚酰胺"},{"id":"73dc5f3d-ddc1-4ad6-bd2d-d8628bf92c4b","keyword":"相容性","originalKeyword":"相容性"},{"id":"cfc3fe38-7eb2-4d24-bc5f-31aca28e5eb0","keyword":"耐水性能","originalKeyword":"耐水性能"},{"id":"08e8264e-84a8-44ca-81e8-94585a25b030","keyword":"流变性能","originalKeyword":"流变性能"}],"language":"zh","publisherId":"gfzclkxygc200303054","title":"共聚酰胺增强热塑性淀粉材料的性能","volume":"19","year":"2003"},{"abstractinfo":"以疏水性的醋酸酯淀粉为基材,壳聚糖为抗菌剂制备了醋酸酯淀粉抗菌材料。通过考察醋酸酯淀粉取代度对壳聚糖分散性、材料力学性质、热性质和抗菌活性的影响,发现醋酸酯淀粉的取代度由1.9增加到2.9,抗菌材料表面和断面越均一,壳聚糖的分散性越好;但高取代度会削弱淀粉分子与壳聚糖分子间的相互作用力,使抗菌材料的断裂伸长率由33.7%降低至8.9%,玻璃化转变温度由74.8℃升高至86.4℃,拉伸模量由205 MPa增至260 MPa。同时过高的取代度又会影响壳聚糖的溶出,降低材料的抗菌活性。","authors":[{"authorName":"陈玲","id":"baf87dc9-9efa-4f3a-b9fe-333659f9eb73","originalAuthorName":"陈玲"},{"authorName":"简妮","id":"5c9e57e7-a612-4ef1-9817-a1fe60ffd56e","originalAuthorName":"简妮"},{"authorName":"别平平","id":"413814d9-a1d7-460f-a700-e34b9bc3c42d","originalAuthorName":"别平平"},{"authorName":"刘鹏","id":"99c7a9fc-4ef7-49e4-bed4-aee89f6175af","originalAuthorName":"刘鹏"},{"authorName":"李丹","id":"e0d6d4de-25bc-4ced-a696-8ffd578d6c83","originalAuthorName":"李丹"},{"authorName":"李晓玺","id":"548f3bce-9391-4042-bd75-b3fb9ee98ced","originalAuthorName":"李晓玺"}],"doi":"","fpage":"47","id":"81d13b8b-148a-4015-8259-d551ed540eeb","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"ac225cec-b2ce-458d-b675-0f9d0c8ae460","keyword":"醋酸酯淀粉","originalKeyword":"醋酸酯淀粉"},{"id":"b91d5be7-ad65-4e70-b319-7c2624f7c530","keyword":"壳聚糖","originalKeyword":"壳聚糖"},{"id":"cd9840cb-3f7c-4350-92c3-05d3db76508e","keyword":"抗菌活性材料","originalKeyword":"抗菌活性材料"}],"language":"zh","publisherId":"gfzclkxygc201204012","title":"醋酸酯淀粉抗菌材料的性质","volume":"28","year":"2012"},{"abstractinfo":"制备了聚乳酸/改性淀粉复合材料及发泡材料,研究了聚乳酸/淀粉复合体系的相容性及流变性能,结果表明,糊化改性淀粉与聚乳酸具有较好的相容性,改性淀粉与聚乳酸复合材料具有较好的熔体粘弹行为,淀粉糊化改性后,复合材料的发泡性能得到优化,吸水性大大降低.","authors":[{"authorName":"袁华","id":"f192b36b-e7c1-4434-af1d-85c979ff4065","originalAuthorName":"袁华"},{"authorName":"赵秋峰","id":"05085b47-96eb-4bd5-912d-a7cead651da3","originalAuthorName":"赵秋峰"},{"authorName":"刘智勇","id":"203dda6a-5e4a-44cb-8a61-26a3fba45f7f","originalAuthorName":"刘智勇"},{"authorName":"任杰","id":"b080fae4-d759-46ab-a412-a72dff37d7d5","originalAuthorName":"任杰"}],"doi":"10.3969/j.issn.1003-0999.2009.03.012","fpage":"49","id":"9d78e189-25b7-4557-add5-41e533f3a263","issue":"3","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"1ba47682-5ea1-440e-8859-ba6a1385af07","keyword":"聚乳酸","originalKeyword":"聚乳酸"},{"id":"b907c118-b76c-4fa4-869d-8b4305158bdf","keyword":"淀粉","originalKeyword":"淀粉"},{"id":"ded0e6f6-7517-40eb-887d-5e4fc6b05430","keyword":"发泡","originalKeyword":"发泡"},{"id":"c4cb9d06-35ef-496d-9e68-cc5945fe3db3","keyword":"相容性","originalKeyword":"相容性"},{"id":"24071138-4273-4dc2-aefe-c923a1c5cc89","keyword":"流变","originalKeyword":"流变"}],"language":"zh","publisherId":"blgfhcl200903012","title":"聚乳酸/淀粉复合发泡材料的研究(Ⅱ):改性淀粉对复合材料相容性、流变性能和发泡性能影响","volume":"","year":"2009"},{"abstractinfo":"淀粉基(starch-based)材料是一类重要的生物降解聚合物,羟基磷灰石(HA)是人体骨骼的主要成分,以淀粉基材料为基体、以HA为增强材料的HA/淀粉基复合材料是一类新型的复合生物材料,其具有良好的生物相容性,在骨修复领域具有巨大的应用潜力.初步对该复合材料进行了归类,并介绍了其制备工艺、性能和应用等方面的研究近况,指出改进复合工艺、采用纳米级HA增强并进行表面改性是其发展趋势.","authors":[{"authorName":"徐艺展","id":"b8d8c3a7-9bdb-4f25-8bd6-c1a52a340fd9","originalAuthorName":"徐艺展"},{"authorName":"刘榕芳","id":"899ae273-91e8-4e13-99a1-b06a88851cdf","originalAuthorName":"刘榕芳"},{"authorName":"肖秀峰","id":"36873db7-1048-4f86-ae46-3c13b81c86f4","originalAuthorName":"肖秀峰"}],"doi":"","fpage":"100","id":"432c06fe-c1c1-4bed-9a30-7474f1d0cf5c","issue":"9","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"602a4bc9-3962-4f15-a62e-e4a9cb0a0a30","keyword":"淀粉基材料","originalKeyword":"淀粉基材料"},{"id":"a53dd999-de38-459a-8d81-0b35fc27e895","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"},{"id":"c6c01ec0-9f75-4230-abb4-d1832cad0d09","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"d8d7093d-f218-4b01-bb84-d31d0138e46c","keyword":"生物相容性","originalKeyword":"生物相容性"},{"id":"9fff4cfd-6289-400a-a148-4c5a73069f5a","keyword":"骨修复","originalKeyword":"骨修复"}],"language":"zh","publisherId":"cldb200509029","title":"羟基磷灰石/淀粉基复合生物材料","volume":"19","year":"2005"},{"abstractinfo":"通过对可溶性淀粉湿法接枝VAc(醋酸乙烯酯)制备改性淀粉,并将改性淀粉用于EVA鞋底发泡材料中以制备环境友好型复合发泡材料.利用FT-IR、接枝率和接枝效率研究淀粉的接枝改性效果,通过SEM和物理力学性能的测定研究鞋底发泡材料的结构与性能.红外光谱中在1746cm-1处出现的C=O 伸缩振动峰表明醋酸乙烯酯单体可能已经接枝到淀粉大分子链上.淀粉湿法接枝改性的最佳引发剂浓度为7mmol/L,最佳反应温度为70℃.SEM分析表明改性淀粉与EVA具有较好的相容性.湿法接枝改性淀粉/EVA鞋底发泡材料的密度低于传统EVA鞋底发泡材料的密度,当改性淀粉含量为40份时,密度最小为0.085g/cm3.","authors":[{"authorName":"张由芳","id":"352acba1-ba3e-4506-9ca7-84a9212c522c","originalAuthorName":"张由芳"},{"authorName":"郑玉婴","id":"e9848807-4280-4312-9f58-8734cc465cde","originalAuthorName":"郑玉婴"},{"authorName":"刘艺","id":"f464ab52-bceb-474e-9729-0f53985cf7f7","originalAuthorName":"刘艺"},{"authorName":"肖有游","id":"3c1edcf0-11b4-4646-a8dc-1da2ed1c7572","originalAuthorName":"肖有游"}],"doi":"10.3969/j.issn.1001-9731.2013.15.027","fpage":"2253","id":"d62537df-1200-4112-9215-9fa5ac33a850","issue":"15","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"15228240-117d-45dc-8963-35be2bc8a4cd","keyword":"淀粉","originalKeyword":"淀粉"},{"id":"46f6bd12-7fe4-4512-91c8-b2568ab72e59","keyword":"接枝改性","originalKeyword":"接枝改性"},{"id":"ca53a736-aa69-4363-ba87-44ac671877e4","keyword":"EVA","originalKeyword":"EVA"},{"id":"3b7a55c9-0b1c-44af-9b98-6d90dc88be53","keyword":"发泡","originalKeyword":"发泡"}],"language":"zh","publisherId":"gncl201315027","title":"湿法接枝改性淀粉在EVA鞋底发泡材料中应用的初步探讨","volume":"44","year":"2013"}],"totalpage":5563,"totalrecord":55621}