欢迎登录材料期刊网

材料期刊网

高级检索

This work mainly investigated the microstructure and mechanical properties of Mg-Zn-Y-Zr alloys with Zn/Y ratios of 5 and 10. An X-ray diffraction (XRD) analysis indicated that the two alloys were mainly composed of an icosahedral phase (I-phase) and alpha-Mg matrix. For the alloy with a Zn/Y ratio of 10, however, the diffraction peaks of the I-phase were stronger. Microstructure observation showed that the I-phase preferentially existed in the form of I-phase/alpha-Mg matrix interdendritic eutectic pockets at grain boundaries. Moreover, when the Zn/Y ratio was increased 2 times, the volume fraction of the I-phase in the alpha-Mg matrix increased 1.5 times and a tiny Mg(7)Zn(3) phase formed. Energy-dispersive spectroscopy (EDS) mapping and electron probe microanalysis (EPMA) results suggested that the chemical composition of the I-phase was not a constant value. Computer-aided cooling curve analysis (CA-CCA) indicated that, for the alloy with a Zn/Y ratio of 5, formation of the I-phase relied on the W-phase transformation and the eutectic reaction of the residual melt. However, the I-phase formation for the alloy with a Zn/Y ratio of 10 depended on the eutectic reaction of the melt. Tensile tests indicated that the mechanical properties of the two as-cast alloys were poor. After hot extrusion processing, the mechanical properties of the alloy with a Zn/Y ratio of 10 were noticeably increased. The ultimate tensile strength (UTS) and elongation to failure reached 320 MPa and 13 pct, respectively.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%