{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"针对多孔介质中聚合物溶液的粘弹特性难描述的问题,通过对其在多孔介质中流动特征的分析,提出将粘弹性流体在模型中流动过程分为入口收敛阶段、通过孔阶段和挤出阶段,并将各个阶段压降分解为粘性耗散压降和弹性拉伸压降.通过张量分析的方法,综合考虑了聚合物溶液的假塑性、弹性和弹性回复特性以及多孔介质的比和孔隙因子(喉道长度与喉道直径之比)等因素,推导了各个阶段的粘性耗散压降和弹性拉伸压降的表达式,建立了粘弹性聚合物溶液通过孔模型的压降数学模型.实例计算结果表明,建立粘弹性本构模型时,必须考虑通过孔阶段和挤出阶段以及弹性流体的弹性回复;弹性特性是造成压降损失的影响因素,在聚驱过程中不可忽略.","authors":[{"authorName":"曹仁义","id":"0090e855-146b-41c1-98ef-cc4c2fada7b3","originalAuthorName":"曹仁义"},{"authorName":"程林松","id":"0bacf197-d56c-49a9-ba4f-7d8dd2b0f24f","originalAuthorName":"程林松"},{"authorName":"郝炳英","id":"efa0a7ce-f0a7-476e-b1a5-51acbf5d70cb","originalAuthorName":"郝炳英"},{"authorName":"许家峰","id":"f63bbd3f-73e7-4a0d-9504-c94a80d126d1","originalAuthorName":"许家峰"},{"authorName":"姚大伟","id":"bd944df7-345d-4972-b472-395aa4f8c3e0","originalAuthorName":"姚大伟"}],"doi":"","fpage":"15","id":"1d35ccb3-baf4-4c26-ba45-1ab1124ca8d3","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"6ae95c52-526c-474f-a12a-487151642564","keyword":"聚合物溶液","originalKeyword":"聚合物溶液"},{"id":"d50bac92-9506-44e2-bc2b-3e3d3a510f81","keyword":"流变性","originalKeyword":"流变性"},{"id":"b3fb4aec-83a4-4d18-bb7a-4df0a98e8899","keyword":"粘弹性","originalKeyword":"粘弹性"},{"id":"af28ac7e-c580-4140-aba8-7da4904cc3dd","keyword":"模型","originalKeyword":"孔喉模型"},{"id":"70624b96-36bd-4548-8ea8-524424419829","keyword":"压降损失","originalKeyword":"压降损失"},{"id":"a3e7aa59-942a-46da-9f54-5223216ba44f","keyword":"数学模型","originalKeyword":"数学模型"}],"language":"zh","publisherId":"gfzclkxygc200803004","title":"粘弹性聚合物溶液模型流变动力分析","volume":"24","year":"2008"},{"abstractinfo":"应用重量法、俄歇电子能谱和电子显微术对铝在硫酸中形成的阳极氧化膜在封过程中增重和溶解特性进行了研究,提出了两种冷封模型。对较薄的氧化膜,封反应在整个氧化膜层进行,形成的反应产物逐步将微孔完全封闭;对较厚的氧化膜,封反应主要发生在氧化膜的外层区域,反应产物逐步将微孔的外层部位封闭,而内层部位仍未填满。","authors":[{"authorName":"李宜","id":"5536e457-876f-4112-a865-98ae5a5166e7","originalAuthorName":"李宜"},{"authorName":"朱祖芳","id":"91becd94-2775-43ca-a180-250540e6ac79","originalAuthorName":"朱祖芳"}],"categoryName":"|","doi":"","fpage":"321","id":"4c39d2ce-376a-4278-b4d5-47bb8e44f600","issue":"4","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[],"language":"zh","publisherId":"1005-4537_1992_4_9","title":"铝阳极氧化膜冷封机理研究——Ⅱ.氧化膜冷封模型","volume":"12","year":"1992"},{"abstractinfo":"利用数值模拟的方法研究了边缘煤气流过分发展对炉钢砖的影响。建立了水冷式炉钢砖模型,计算了其在不同煤气温度下热面的温度分布和应力差异以及水管和内部耐材表面的最高温度和最大应力。结果发现,煤气温度从500℃升高至1100℃,钢砖的热面最高温度上升约500℃,热面高温区域应力迅速增大,导致钢砖破损加剧,因此需借助布料等上部调节手段,控制边缘煤气流过分发展,防止形成边缘“管道”,确保钢砖正常、稳定地工作。","authors":[{"authorName":"李洋龙,程树森","id":"ba259aec-0f18-4739-916c-0b5ce23284bc","originalAuthorName":"李洋龙,程树森"}],"categoryName":"|","doi":"","fpage":"6","id":"7fe32dda-7144-43ed-8cfb-b178848113c9","issue":"6","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"2ff36c37-7362-4e0b-8ad6-6038e9d8eb29","keyword":"水冷炉钢砖 ","originalKeyword":"水冷炉喉钢砖 "},{"id":"91bbddc0-2c51-406c-96fe-bce6b5c41825","keyword":" temperature field ","originalKeyword":" temperature field "},{"id":"fac11459-73ba-4961-9d72-1f7826931b25","keyword":" thermal stress ","originalKeyword":" thermal stress "},{"id":"d392f413-c3ce-4657-aff9-628197fe6b4e","keyword":" edge channeling","originalKeyword":" edge channeling"}],"language":"zh","publisherId":"1001-0963_2012_6_3","title":"内铸钢管水冷炉钢砖温度场和应力场计算","volume":"24","year":"2012"},{"abstractinfo":"利用数值模拟的方法研究了边缘煤气流过分发展对炉钢砖的影响。建立了水冷式炉钢砖模型,计算了其在不同煤气温度下热面的温度分布和应力差异以及水管和内部耐材表面的最高温度和最大应力。结果发现,煤气温度从500℃升高至1100℃,钢砖的热面最高温度上升约500℃,热面高温区域应力迅速增大,导致钢砖破损加剧,因此需借助布料等上部调节手段,控制边缘煤气流过分发展,防止形成边缘“管道”,确保钢砖正常、稳定地工作。","authors":[{"authorName":"李洋龙","id":"b770e02b-ea32-462e-8911-8152957b2bab","originalAuthorName":"李洋龙"},{"authorName":"程树森","id":"634d25ed-bacf-4ca4-8827-18e2935d269f","originalAuthorName":"程树森"}],"doi":"","fpage":"6","id":"b87753d1-045a-4ede-82af-de2dec492eab","issue":"6","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"2f424600-435d-4a38-9b7a-710ca44acb39","keyword":"水冷炉钢砖","originalKeyword":"水冷炉喉钢砖"},{"id":"b705e202-9547-414b-944c-a19cd219aa26","keyword":"温度场","originalKeyword":"温度场"},{"id":"2a8bf905-1930-428f-abe6-9e2ee26cfcac","keyword":"热应力","originalKeyword":"热应力"},{"id":"a50af85a-bcb7-43bf-9911-21c16e217193","keyword":"边缘“管道”","originalKeyword":"边缘“管道”"}],"language":"zh","publisherId":"gtyjxb201206002","title":"内铸钢管水冷炉钢砖温度场和应力场计算","volume":"24","year":"2012"},{"abstractinfo":"研究耦合均气相反应机理和总括反应机理,以模拟甲烷在模型中的热解碳沉积过程.在平推流反应器模型中,利用均气相反应机理对甲烷裂解的气相组分的变化进行模拟,并将平推流反应器相应位置的气体组分浓度作为模型入口初始浓度.运用包含总括反应机理及氢气抑制模型的热解碳沉积模型,对甲烷在模型中的化学气相渗透过程进行模拟.在温度1373和1398 K,甲烷压强10~20 kPa,停留时间0.08和0.2 s下,沿模型深度方向的热解碳平均沉积速率的模拟结果与文献报道的实验结果有较好的吻合.模拟结果表明:热解碳平均沉积速率随甲烷压强和模型深度的增加而增大,且通的沉积速率要低于相应实验条件下一端闭模型沉积速率.","authors":[{"authorName":"汤哲鹏","id":"bac822a2-7059-4f45-8165-f3e6af73131b","originalAuthorName":"汤哲鹏"},{"authorName":"张中伟","id":"a900ca23-c019-41f3-9ba0-e7a2bdc68f6e","originalAuthorName":"张中伟"},{"authorName":"房金铭","id":"8aa58243-29ad-4030-be92-d44a571648de","originalAuthorName":"房金铭"},{"authorName":"彭雨晴","id":"fd1edc50-c839-413c-8a5c-12d3d493fa9c","originalAuthorName":"彭雨晴"},{"authorName":"李爱军","id":"dc42d1ec-a4c9-42b3-ab72-e9db722a7d2e","originalAuthorName":"李爱军"},{"authorName":"张丹","id":"5e70b4cf-e933-4d4b-8638-e7ea503fd4e1","originalAuthorName":"张丹"}],"doi":"10.15541/jim20150365","fpage":"298","id":"aec08024-f236-4f19-af70-0d30b2284e48","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"e25f5bdc-f71e-48b0-9d7a-136508ccb07e","keyword":"模拟","originalKeyword":"模拟"},{"id":"8e025ce4-3e04-4683-a1b3-d576b40452df","keyword":"热解碳","originalKeyword":"热解碳"},{"id":"f19522db-122c-45ff-b464-ef5c50369c5f","keyword":"甲烷","originalKeyword":"甲烷"},{"id":"559f6913-6ea6-48b0-9d2a-509c50f5e378","keyword":"化学气相渗透","originalKeyword":"化学气相渗透"},{"id":"4e3242a5-3f7f-46ca-bbca-a9e28c406650","keyword":"模型","originalKeyword":"模型孔"}],"language":"zh","publisherId":"wjclxb201603012","title":"模型中化学气相渗透过程的热解碳沉积模拟","volume":"31","year":"2016"},{"abstractinfo":"通过调整制备过程中的搅拌速度合成了具有不同二次结构的双模型SiO2纳米材料(BMMs), 进而通过3-(2-氨基乙基氨基)丙基三甲氧基硅烷对其表面修饰, 以布洛芬为模型药物, 重点考察了组装与缓释性能, 并根据Korsmeyer–Peppas方程分析其释放动力学行为. 采用XRD、TEM、N2吸脱附曲线以及元素分析等多种表征手段, 结果表明通过改变搅拌速度可以改变正硅酸乙酯的水解和缩聚速度, 从而直接影响BMMs一级结构的有序度和由颗粒堆积而成的二级大小. 选用布洛芬作为药物模型, BMMs一级结构主要影响其药物的组装性能, 二级结构则主要影响药物分子的缓释行为, 二级越大, 释放速率越快.","authors":[{"authorName":"高琳","id":"8a055c7a-5e9e-4868-bf14-53b2d91a2030","originalAuthorName":"高琳"},{"authorName":"孙继红","id":"48ad35c6-0761-4950-bf59-d710d845bf1c","originalAuthorName":"孙继红"},{"authorName":"李育珍","id":"9b4bf9db-bc71-4ac6-9a49-859b0d2b4a51","originalAuthorName":"李育珍"},{"authorName":"任博","id":"4140a69d-4bd0-4547-a050-24ede0f4946a","originalAuthorName":"任博"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2012.00337","fpage":"337","id":"8e5d3216-6c05-4942-9af7-80eb5fb021e6","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"fd3bdea5-88e6-4a30-99da-0bcec5c01cd9","keyword":"双模型; SiO2; 布洛芬; 装载; 释放","originalKeyword":"双模型介孔; SiO2; 布洛芬; 装载; 释放"}],"language":"zh","publisherId":"1000-324X_2012_4_4","title":"双模型SiO2二次结构对布洛芬装载和释放性能的影响","volume":"27","year":"2012"},{"abstractinfo":"通过调整制备过程中的搅拌速度合成了具有不同二次结构的双模型SiO2纳米材料(BMMs),进而通过3-(2-氨基乙基氨基)丙基三甲氧基硅烷对其表面修饰,以布洛芬为模型药物,重点考察了组装与缓释性能,并根据Korsmeyer - Peppas方程分析其释放动力学行为.采用XRD、TEM、N2吸脱附曲线以及元素分析等多种表征手段,结果表明通过改变搅拌速度可以改变正硅酸乙酯的水解和缩聚速度,从而直接影响BMMs一级结构的有序度和由颗粒堆积而成的二级大小.选用布洛芬作为药物模型,BMMs一级结构主要影响其药物的组装性能,二级结构则主要影响药物分子的缓释行为,二级越大,释放速率越快.","authors":[{"authorName":"高琳","id":"94d0b68c-40e3-47cb-a278-7d0b136814b7","originalAuthorName":"高琳"},{"authorName":"孙继红","id":"b42538fa-9c0c-407b-94d1-6241836f39bc","originalAuthorName":"孙继红"},{"authorName":"李育珍","id":"0290150a-994a-4ad7-8fcd-ab4f8a121952","originalAuthorName":"李育珍"},{"authorName":"任博","id":"0e4c37d6-8bd5-408e-86ee-821e333aa45c","originalAuthorName":"任博"}],"doi":"10.3724/SP.J.1077.2012.00337","fpage":"337","id":"7ebb9019-4218-4348-a121-4bc8fc29a230","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"b2f2ffad-ac3a-456a-afe3-856eea78cc8c","keyword":"双模型","originalKeyword":"双模型介孔"},{"id":"7b6e85ec-3a00-4ca5-b472-00d07bc2d6d5","keyword":"SiO2","originalKeyword":"SiO2"},{"id":"8a35ee2a-07a9-45de-a2ca-202e1cb94417","keyword":"布洛芬","originalKeyword":"布洛芬"},{"id":"927b69f3-51b9-4509-ad85-330d40d0cfca","keyword":"装载","originalKeyword":"装载"},{"id":"cdad720d-2b45-43b4-aa9a-4debf3f83129","keyword":"释放","originalKeyword":"释放"}],"language":"zh","publisherId":"wjclxb201204001","title":"双模型SiO2二次结构对布洛芬装载和释放性能的影响","volume":"27","year":"2012"},{"abstractinfo":"研究了孔隙率低于65%的球形泡沫铝合金的单轴压缩应力应变曲线、吸能能力和吸能效率,并与多面体形泡沫铝合金比较,表明球形使力学性能有较大提高.采用球形自洽模型研究了球形泡沫铝合金的屈服应力与孔隙率关系,与实验结果吻合良好,表明该模型可以有效地预测球形泡沫铝合金的屈服强度.","authors":[{"authorName":"王展光","id":"4b292990-bed4-4e65-9734-930fb81cbe2e","originalAuthorName":"王展光"},{"authorName":"尚金堂","id":"f9c26d1c-a832-43e5-b42a-a225700b070c","originalAuthorName":"尚金堂"},{"authorName":"何思渊","id":"92f5b0ad-1f2c-4b53-bbc2-00896ce86693","originalAuthorName":"何思渊"},{"authorName":"何德坪","id":"6d8b3124-2ff4-4a13-b472-50cc92b664e1","originalAuthorName":"何德坪"},{"authorName":"单建","id":"fa0fdb31-f246-463b-9c80-3661c27d0a8b","originalAuthorName":"单建"}],"doi":"10.3969/j.issn.1009-6264.2006.06.030","fpage":"129","id":"5da737a7-2562-42f1-91ce-892e49b129ee","issue":"6","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"236b080f-eac3-49a4-b4ad-4a6795fc0b51","keyword":"球形泡沫铝合金","originalKeyword":"球形孔泡沫铝合金"},{"id":"2e5e5c8e-0af2-4470-804d-31b0be9a057b","keyword":"球形自洽模型","originalKeyword":"球形自洽模型"},{"id":"85e6114a-6345-48a9-8b44-daa214a3cc04","keyword":"屈服应力","originalKeyword":"屈服应力"}],"language":"zh","publisherId":"jsrclxb200606030","title":"球形泡沫铝合金压缩性能与理论模型","volume":"27","year":"2006"},{"abstractinfo":"对轴棒法编织碳/碳(C/C)复合材料衬进行固体火箭发动机(SRM)地面点火试验,采用扫描电子显微镜(SEM)对烧蚀后衬入口部位、喉部、出口部位的烧蚀形貌进行分析.结果表明,在9.362 MPa压强下,轴棒法编织C/C衬烧蚀性能稳定、均匀,烧蚀后型面光滑,平均线烧蚀率为0.2569 mm·s-1,是适用于高工作压强、大流量的SRM喷管衬材料.C/C衬不同部位呈现出不同的烧蚀形貌.","authors":[{"authorName":"吴书锋","id":"1bb908e1-61bb-4ebd-95d0-34555718965b","originalAuthorName":"吴书锋"},{"authorName":"张玲","id":"517c1fe0-f732-48cd-920a-11a6325f3cca","originalAuthorName":"张玲"},{"authorName":"周绍建","id":"5bb3ca37-9900-4838-b511-5661753f5687","originalAuthorName":"周绍建"},{"authorName":"嵇阿琳","id":"44d7143c-9b4b-44b7-9bfc-30abde20ca1f","originalAuthorName":"嵇阿琳"},{"authorName":"杨杰","id":"ebe7ccf0-b022-4ad3-a642-146feb8e5cb1","originalAuthorName":"杨杰"},{"authorName":"周红英","id":"024ca646-cd62-4e89-a41c-4dc037185aed","originalAuthorName":"周红英"},{"authorName":"刘建军","id":"ea8f4abc-9726-4d06-9084-a14e656aff41","originalAuthorName":"刘建军"}],"doi":"","fpage":"62","id":"44832024-b301-4bc0-bdcd-22282df28aee","issue":"22","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"6491c67f-1518-4155-9cba-66f695950a04","keyword":"轴棒法编织","originalKeyword":"轴棒法编织"},{"id":"65bf3ce3-b39a-43a0-aebc-b0250b4f59e7","keyword":"C/C复合材料","originalKeyword":"C/C复合材料"},{"id":"68cc6f2d-6e64-4623-95d4-521d4a41b49f","keyword":"衬","originalKeyword":"喉衬"},{"id":"fc7ea03b-849a-4b51-9112-c7d1191d6cf9","keyword":"点火试验","originalKeyword":"点火试验"},{"id":"084174db-1569-413d-8fa1-27e2a8243f8c","keyword":"烧蚀性能","originalKeyword":"烧蚀性能"}],"language":"zh","publisherId":"cldb201322017","title":"轴棒法编织C/C复合材料衬烧蚀性能分析","volume":"27","year":"2013"},{"abstractinfo":"如何控制和预测结构是炭气凝胶研究的重要课题.然而,由于耗时耗财,导致实验方法研究控制和预测结构成为难题.本文提出一种基于神经网络的炭气凝胶结构的预测与优化模型,并采用遗传算法设计和优化模型,对六种典型训练算法模型性能进行比较分析.利用该模型对孔径和吸附容量进行预测,两者的预测相关系数分别为0.992和0.981,预测均方根误差分别为0.077和0.054.经测试,该模型与实验研究的结果相符,并有效的应用于预测和控制炭气凝胶实验参数.","authors":[{"authorName":"杨榛","id":"2eab71f3-0310-4eb4-877d-97abd754275a","originalAuthorName":"杨榛"},{"authorName":"乔文明","id":"b3380f6f-77d1-4df5-8c58-b2efd665be30","originalAuthorName":"乔文明"},{"authorName":"梁晓怿","id":"42250899-1de2-4c08-a0cd-e6a144eba48b","originalAuthorName":"梁晓怿"}],"doi":"10.1016/S1872-5805(17)60108-2","fpage":"77","id":"8da295fa-dd2f-4555-8946-ce954587ca21","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"3b414011-6b62-4aec-b48a-b8b92452bb14","keyword":"炭气凝胶","originalKeyword":"炭气凝胶"},{"id":"d53c804c-3534-4326-a1fd-0a932dd87917","keyword":"结构","originalKeyword":"孔结构"},{"id":"77a2d8d3-09fa-4285-adbb-2994848af057","keyword":"神经网络","originalKeyword":"神经网络"},{"id":"73aa5737-9191-4f4f-b862-3bfc3dcfa883","keyword":"训练算法","originalKeyword":"训练算法"},{"id":"f92460c7-ab56-4012-af6e-68d8d1c2052f","keyword":"模型","originalKeyword":"模型"}],"language":"zh","publisherId":"xxtcl201701012","title":"基于神经网络的炭气凝胶结构的预测与优化模型研究","volume":"32","year":"2017"}],"totalpage":2376,"totalrecord":23756}