{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用循环伏安一步共聚法在碳纳米管修饰的铂基体上制备了立方体的铁氰化镍/聚苯胺/碳纳米管杂化膜;采用循环伏安法和计时电流法测试了杂化膜对抗坏血酸的电催化氧化性能;通过扫描电子显微镜(SEM)观察了杂化膜电极的表观形貌.结果表明,该电极对抗坏血酸具有较高的电催化氧化活性;在0.1 mol/L PBS和0.1 mol/L KNO3的溶液中,该杂化膜电极对抗坏血酸的催化氧化电流与其浓度在1×10-5 ~ 1.4×10-4 mol/L呈良好的线性关系,相关性系数R=0.996 6,检出限为6.09×10-6 mol/L,同时具有较高的灵敏度754.8mA·M-1·cm-2,并采用计时电流法对抗坏血酸催化氧化的扩散系数和催化速率常数进行了研究.","authors":[{"authorName":"马旭莉","id":"cd1027a9-6b64-4f1a-bef8-63582f370914","originalAuthorName":"马旭莉"},{"authorName":"孙守斌","id":"ae23047b-a6d2-473e-b9e8-7aca32329536","originalAuthorName":"孙守斌"},{"authorName":"王忠德","id":"efa78336-bcff-4af2-9800-fff46af7a22e","originalAuthorName":"王忠德"},{"authorName":"杨宇娇","id":"59ac1976-6a02-4244-b93c-148c946191f6","originalAuthorName":"杨宇娇"},{"authorName":"郝晓刚","id":"2b0722d0-d293-4906-bed6-0b8c4162f38c","originalAuthorName":"郝晓刚"},{"authorName":"臧杨","id":"0c336d69-5ffc-4ad5-a8b0-20c305dff3f2","originalAuthorName":"臧杨"},{"authorName":"张忠林","id":"7e2f3fd4-974a-4ee6-a38e-213430f3b50d","originalAuthorName":"张忠林"},{"authorName":"刘世斌","id":"360f5374-e5f7-4ba5-b042-06b0cf269b67","originalAuthorName":"刘世斌"}],"doi":"","fpage":"26","id":"4cbc18f4-11ed-4fcd-9281-7b6c47014087","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"7d65ea33-a4dc-4379-ac68-037f060ee49a","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"34ee578e-11b4-4c3e-a7bd-88669551727a","keyword":"铁氰化镍","originalKeyword":"铁氰化镍"},{"id":"93e8eae9-df77-408f-94e2-616a455b708e","keyword":"聚苯胺","originalKeyword":"聚苯胺"},{"id":"27980b78-5f1a-44c7-b0bb-3d939efaa734","keyword":"电催化","originalKeyword":"电催化"},{"id":"e2c577ee-ee8c-4ff5-a3f3-4ed6b4e6106f","keyword":"电化学共聚杂化膜","originalKeyword":"电化学共聚杂化膜"}],"language":"zh","publisherId":"xxtcl201301005","title":"碳纳米管/铁氰化镍/聚苯胺杂化膜对抗坏血酸的电催化氧化","volume":"28","year":"2013"},{"abstractinfo":"通过对纯铝板电化学阳极氧化及腐蚀液处理, 在一定的条件下制备出了排布有序的Al2O3纳米线, 采用SEM、EDS、IR手段对纳米线微观形貌和组成进行了表征. 实验结果表明: 多孔Al2O3薄膜经腐蚀后形成纳米线,在铝基板上呈六角形排布, 组成为纯Al2O3, 直径随电氧化温度、槽电压的升高和腐蚀处理时间的延长减小, 直径范围为16~60nm, 长径比较大. 在实验的基础上, 提出了有序排布Al2O3纳米线的形成机理.","authors":[{"authorName":"池永庆","id":"cfb634ce-e885-4445-82e0-c8a20b271581","originalAuthorName":"池永庆"},{"authorName":"陈旭","id":"438f1d0d-2230-4de1-bdf8-db0befc1f5f1","originalAuthorName":"陈旭"},{"authorName":"刘世斌","id":"15f101d5-46f0-4080-9727-cd30198bb3de","originalAuthorName":"刘世斌"},{"authorName":"张忠林","id":"9b86f2ab-b607-468f-b1c2-5892e8a76586","originalAuthorName":"张忠林"},{"authorName":"段东红","id":"208a9211-43c7-4fad-a97c-6a69a4141bea","originalAuthorName":"段东红"},{"authorName":"李一兵","id":"f49f9226-1abf-4acc-8c62-4159184b8992","originalAuthorName":"李一兵"},{"authorName":"郝晓刚","id":"e6ddb63d-482c-4577-b117-863377a647eb","originalAuthorName":"郝晓刚"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2010.00851","fpage":"851","id":"1fedbf92-d42c-458e-93ff-4d8b4b4f17a5","issue":"8","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"611e648d-9ef2-4d2c-992d-06c4ce4f683d","keyword":"Al2O3纳米线","originalKeyword":"Al2O3纳米线"},{"id":"fc030cb7-85f2-40bd-a5d7-2ea55632b879","keyword":" electro-oxidation","originalKeyword":" electro-oxidation"},{"id":"8eaeffa7-5e72-4ad7-a033-4cab98f5eea9","keyword":" preparation","originalKeyword":" preparation"},{"id":"82cbf105-3910-40ed-9101-70f0757ce6b4","keyword":" mechanism","originalKeyword":" mechanism"}],"language":"zh","publisherId":"1000-324X_2010_8_11","title":"Al2O3纳米线的电化学法制备及形成机理分析","volume":"25","year":"2010"},{"abstractinfo":"采用脉冲电沉积法制备了碳载的Pt-Ru-Ho电催化剂,循环伏安法(CV)和交流阻抗法(EIS)测定催化剂的甲醇电氧化活性,用XRD、EDS和XPS表征电催化剂的物性结构、表面元素组成和价态形式.结果表明,电催化剂中Pt,Ru,H0 3种元素以合金的形式存在,在合金表面有HoO存在,合金微粒粒径为3.5 nm,比表面积为73.3 m2.g-1;掺杂适量稀土金属Ho对Pt-Ru合金的活性有明显影响,其中原子比为npt:nRu:nHo=1:1:0.2时,Pt-Ru-Ho/C中Ho的含量较为适宜,电催剂的Tafel常数α减小,反应活化能低于Pt-Ru/C,为28.4 kJ·mol-1,催化活性明显高于Pt-Ru/C,但Ho含量过高Pt-Ru-Ho/C的活性低于Pt-Ru/C:Pt-Ru-Ho0 .2/C甲醇的反应级数为0.17级.","authors":[{"authorName":"刘世斌","id":"24b79b96-4f56-4834-b19b-610f4dc38bdd","originalAuthorName":"刘世斌"},{"authorName":"王秀光","id":"b59f6adf-6572-42d1-b694-37d01102c819","originalAuthorName":"王秀光"},{"authorName":"李一兵","id":"e64ce1e7-c92b-41d2-974e-9f3dcd515dfb","originalAuthorName":"李一兵"},{"authorName":"郝晓刚","id":"959a5ad9-43a5-436a-ad40-2ef60059b36d","originalAuthorName":"郝晓刚"},{"authorName":"张忠林","id":"f083b7dd-8b09-4965-8b3e-25f2bda85430","originalAuthorName":"张忠林"},{"authorName":"段东红","id":"94d991e2-9faf-4a90-ad7e-d7e3aa6d9b59","originalAuthorName":"段东红"},{"authorName":"孙彦平","id":"918ccb74-e4b3-47a8-8f4e-5a9af2fd405a","originalAuthorName":"孙彦平"}],"doi":"","fpage":"909","id":"40bd5182-aaf1-457a-af4c-8b6f707679dc","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"2fcd7bc6-713d-4b94-8eba-4cbe9ab94b96","keyword":"脉冲电沉积","originalKeyword":"脉冲电沉积"},{"id":"9956503f-3b35-4b8d-abc0-03b25c089b40","keyword":"电催化剂","originalKeyword":"电催化剂"},{"id":"5a33b9d0-9767-4774-b7a6-d9471985546e","keyword":"电催化氧化","originalKeyword":"电催化氧化"},{"id":"5dc22333-b4d3-4568-8898-76a38aa3e9e2","keyword":"稀土元素","originalKeyword":"稀土元素"}],"language":"zh","publisherId":"xyjsclygc200805037","title":"Ho掺杂对Pt-Ru/C电催化氧化甲醇的性能影响","volume":"37","year":"2008"},{"abstractinfo":"采用溶胶凝胶法制备了碳载纳米双金属Ni-Pt (5%,质量分数)/C电催化剂,用TEM、XRD和XPS表征金属粒子的形貌、晶相结构、表面元素及其价态,循环伏安法测试催化剂在碱性溶液中电催化氧化甲醇的活性.结果表明,Ni-Pt金属粒子在碳载体上分布均匀,粒径为3~6 nm,少量Pt的掺杂对纳米Ni活性有明显提高,其中,合金型Ni-Pt(5%)/C在1.0 mol/L NaOH+ 1.0 mol/L CH3OH溶液中峰电流密度可达85.6 mA/mg,是Ni/C峰电流密度的8.7倍,达到Pt/C峰电流密度的15.3%.单位质量铂的电流显著提高.","authors":[{"authorName":"张忠林","id":"305456aa-71aa-42f2-8cc2-b0434672d77a","originalAuthorName":"张忠林"},{"authorName":"宋慧","id":"ea0a0d1b-f2f3-4eb5-a3aa-760d10b08cce","originalAuthorName":"宋慧"},{"authorName":"刘世斌","id":"49948d75-4521-400e-9bc9-85678cf17e8e","originalAuthorName":"刘世斌"},{"authorName":"李一兵","id":"0ac2ee8d-0e80-4c4d-950a-f23316f9f40e","originalAuthorName":"李一兵"},{"authorName":"郝晓刚","id":"5b0745f0-e54c-437f-934e-441bd70e2726","originalAuthorName":"郝晓刚"},{"authorName":"段东红","id":"e4397a68-9749-46d8-8c4e-5ab871e12f05","originalAuthorName":"段东红"},{"authorName":"孙彦平","id":"074f07b2-5dd2-4d77-abbe-4227016614bb","originalAuthorName":"孙彦平"}],"doi":"","fpage":"58","id":"4d1ac042-7621-4637-8762-2e704594a7f6","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"c6c8b2b3-2c2d-415e-9334-14144262cdb1","keyword":"Ni-Pt/C","originalKeyword":"Ni-Pt/C"},{"id":"4b77072d-3cf8-408e-b493-823aa131b411","keyword":"电催化","originalKeyword":"电催化"},{"id":"60c98109-58a6-42ae-b5cf-5ca9975fe0e4","keyword":"甲醇电氧化","originalKeyword":"甲醇电氧化"},{"id":"4a437cfe-dc13-4a82-ab6d-3740239ed4f0","keyword":"碱性介质","originalKeyword":"碱性介质"}],"language":"zh","publisherId":"xyjsclygc201201014","title":"Pt掺杂的纳米Ni电催化氧化甲醇性能的研究","volume":"41","year":"2012"},{"abstractinfo":"通过溶胶填充模板法制备了Li4Ti5O12纳米线阵列, 采用SEM、EDS、XRD对纳米线形貌和组成进行了表征. 实验结果表明: 以孔径为100nm阳极氧化铝模板(AAO), 于-0.1MPa负压环境中填充0.8 mol/L Li4Ti5O12溶胶, 80℃干燥, 900℃空气气氛中焙烧20h, 重复填充-干燥-焙烧四次, 得到平均直径为70nm尖晶石结构的Li4Ti5O12纳米线阵列. 其直径和长度分别由模板的孔径、厚度, 溶胶浓度和填充次数控制, 晶体结构取决于焙烧时间和温度. 并在实验基础上, 分析了纳米线形成机理.","authors":[{"authorName":"池永庆","id":"ce5a5058-6343-4816-ba81-824e936aa829","originalAuthorName":"池永庆"},{"authorName":"陈旭","id":"282a85e6-58b0-409f-8a20-dca43d65aa51","originalAuthorName":"陈旭"},{"authorName":"张忠林","id":"354f9c8f-c9b5-4b4d-afdc-81e4a050493f","originalAuthorName":"张忠林"},{"authorName":"刘世斌","id":"c39f962f-2194-4ff1-93d3-be3466e1aa8a","originalAuthorName":"刘世斌"},{"authorName":"段东红","id":"dcfc0289-0555-40b3-881b-e31b69b28eb3","originalAuthorName":"段东红"},{"authorName":"郝晓刚","id":"83dddf43-d715-4107-868f-b9177ce07464","originalAuthorName":"郝晓刚"},{"authorName":"孙彦平","id":"cf0badd5-847a-4b36-9f4a-491edb6da9ef","originalAuthorName":"孙彦平"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2011.00529","fpage":"529","id":"50bee68f-8da5-403d-896a-87f9bb879c32","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"bbf8ba14-d5e1-4068-a7a7-e54ef70077bf","keyword":"Li4Ti5O12","originalKeyword":"Li4Ti5O12"},{"id":"368fe23e-523a-4722-9a37-b40f0421466a","keyword":" nanoarrays","originalKeyword":" nanoarrays"},{"id":"4e4d9158-ad39-4084-9bbc-5b51f0f015b7","keyword":" aluminum oxide template","originalKeyword":" aluminum oxide template"},{"id":"43eb0c95-56f7-4ec9-a74e-db3411176d2c","keyword":" filling","originalKeyword":" filling"},{"id":"99af2bde-126d-4357-a57d-3cf6bf71c928","keyword":" mechanism","originalKeyword":" mechanism"}],"language":"zh","publisherId":"1000-324X_2011_5_8","title":"模板法Li4Ti5O12纳米线阵列的制备及其机理分析","volume":"26","year":"2011"},{"abstractinfo":"采用溶胶法制备了用于阴离子膜直接甲醇燃料电池的Pt-Ni/C阴极电催化剂,用XRD、XPS和TEM对催化剂进行了表征,电位线性扫描伏安法测试电化学活性及抗甲醇性.结果表明,制备的Pt-Ni合金颗粒分布均匀,粒径为3~5 nm;掺杂Ni元素可显著增加Pt的催化活性和抗甲醇性,在相同碱性电解液中,不同原子比例Pt-Ni/C的催化剂以Pt50Ni50/C的活性最高,抗甲醇性相对Pt/C有显著提高,在0.1 mol/L KOH溶液中其最大电流密度达到106 mA/mg,氧电还原起始过电位比Pt/C的小50 mV.","authors":[{"authorName":"刘世斌","id":"f9211ad5-6de2-4c7d-90b4-0677a9843579","originalAuthorName":"刘世斌"},{"authorName":"程变萍","id":"07218336-5613-4c16-b847-02f0eead5355","originalAuthorName":"程变萍"},{"authorName":"池永庆","id":"752b41ea-b39f-4618-8c1e-46b9e342f38a","originalAuthorName":"池永庆"},{"authorName":"张忠林","id":"e847da8b-2d86-4cc4-9625-84d7c2b4728b","originalAuthorName":"张忠林"},{"authorName":"郝晓刚","id":"40ba6016-37b4-47a7-be37-b604038178c5","originalAuthorName":"郝晓刚"},{"authorName":"李一兵","id":"0fe288ff-93ce-44b8-9b2a-2c5b4af56cd4","originalAuthorName":"李一兵"},{"authorName":"段东红","id":"0a02c05e-023a-4b4a-ab3d-98bbe41b7b05","originalAuthorName":"段东红"}],"doi":"","fpage":"1","id":"f9ebbbee-9516-4d0d-9a79-a7dbfe8f5151","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"30d5898d-f8ca-4ce7-aaf2-debe9a5a805d","keyword":"碱性介质","originalKeyword":"碱性介质"},{"id":"393f94b0-11c4-42c4-9bba-f99697c81423","keyword":"Pt-Ni/C","originalKeyword":"Pt-Ni/C"},{"id":"688414dd-1835-4797-9000-fe93a5235b04","keyword":"氧电还原","originalKeyword":"氧电还原"},{"id":"5763f690-d3e9-4673-95a9-925a342842fd","keyword":"催化活性","originalKeyword":"催化活性"},{"id":"407dc989-534c-4d3a-bc57-71dcd2f67c45","keyword":"抗甲醇性","originalKeyword":"抗甲醇性"}],"language":"zh","publisherId":"xyjsclygc200901001","title":"Ni掺杂的Pt/C碱性条件下电催化氧还原性能","volume":"38","year":"2009"},{"abstractinfo":"通过对纯铝板电化学阳极氧化及腐蚀液处理,在一定的条件下制备出了排布有序的Al2O3纳米线,采用SEM、EDS、IR手段对纳米线微观形貌和组成进行了表征.实验结果表明:多孔Al2O3薄膜经腐蚀后形成纳米线,在铝基板上呈六角形排布,组成为纯Al2O3,直径随电氧化温度、槽电压的升高和腐蚀处理时间的延长减小,直径范围为16~60nm,长径比较大.在实验的基础上,提出了有序排布Al2O3纳米线的形成机理.","authors":[{"authorName":"池永庆","id":"0fc68df8-1649-4e7a-8e19-674929b36367","originalAuthorName":"池永庆"},{"authorName":"陈旭","id":"be1d3c0e-15c9-44aa-81f2-0916bb7ee7d9","originalAuthorName":"陈旭"},{"authorName":"刘世斌","id":"01f482d6-f5a0-44de-8714-9c56a5b1e7e1","originalAuthorName":"刘世斌"},{"authorName":"张忠林","id":"b4a03563-20a2-4653-b6b1-68226ddcdd8a","originalAuthorName":"张忠林"},{"authorName":"段东红","id":"ab3c75e7-9997-4e12-a275-0040563607e6","originalAuthorName":"段东红"},{"authorName":"李一兵","id":"4f032199-c5a5-48fc-93b0-9bc57a0418a8","originalAuthorName":"李一兵"},{"authorName":"郝晓刚","id":"44235fd2-9120-4619-afb3-0499daa2a99e","originalAuthorName":"郝晓刚"}],"doi":"10.3724/SP.J.1077.2010.00851","fpage":"851","id":"a9364b46-3659-43cc-86ef-525497cdf2b4","issue":"8","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"7d147ecc-510e-43e8-a572-c71f4c9849ba","keyword":"Al2O3纳米线","originalKeyword":"Al2O3纳米线"},{"id":"e89cd785-4c4c-4826-943c-aabb25e9131b","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"cd40bef6-6bfa-4285-b556-178096eebc01","keyword":"制备","originalKeyword":"制备"},{"id":"c78c0ecb-0255-48bd-9276-81ec9b20243e","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"wjclxb201008013","title":"Al2O3纳米线的电化学法制备及形成机理分析","volume":"25","year":"2010"},{"abstractinfo":"通过溶胶填充模板法制备了Li4Ti5O12纳米线阵列,采用SEM、EDS、XRD对纳米线形貌和组成进行了表征.实验结果表明:以孔径为100nm阳极氧化铝模板(AAO),于-0.1MPa负压环境中填充0.8 mol/L Li4Ti5O12溶胶,80℃干燥,900℃空气气氛中焙烧20h,重复填充-干燥-焙烧四次,得到平均直径为70nm尖晶石结构的Li4Ti5O12纳米线阵列.其直径和长度分别由模板的孔径、厚度,溶胶浓度和填充次数控制,晶体结构取决于焙烧时间和温度.并在实验基础上,分析了纳米线形成机理.","authors":[{"authorName":"池永庆","id":"cf4f412e-e6e6-4f56-b619-94595eef5c6d","originalAuthorName":"池永庆"},{"authorName":"陈旭","id":"bf4943f3-3fe0-4d49-a03c-78ec99afe631","originalAuthorName":"陈旭"},{"authorName":"张忠林","id":"46b759c0-1a8b-49f9-8edf-354104c77779","originalAuthorName":"张忠林"},{"authorName":"刘世斌","id":"82defb83-b994-4694-8642-c336f2d77e5e","originalAuthorName":"刘世斌"},{"authorName":"段东红","id":"5c398355-6175-4fe2-8d23-11dfa0b677c7","originalAuthorName":"段东红"},{"authorName":"郝晓刚","id":"a4acb10d-72df-4229-ba48-9ace3455ace1","originalAuthorName":"郝晓刚"},{"authorName":"孙彦平","id":"1ee15c49-24cf-4a2d-a642-718feda84697","originalAuthorName":"孙彦平"}],"doi":"10.3724/SP.J.1077.2011.00529","fpage":"529","id":"8bfda7ce-9a6f-4d38-b9c1-98ce14d717db","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"7c8d541c-0dc1-48d4-b6d6-cb8f57f35168","keyword":"Li4Ti5O12","originalKeyword":"Li4Ti5O12"},{"id":"2d1bb302-764c-45de-989d-db4a80949ca9","keyword":"纳米线阵列","originalKeyword":"纳米线阵列"},{"id":"f25ee00b-9e1d-4865-a4a9-7e06fe98296e","keyword":"氧化铝模板","originalKeyword":"氧化铝模板"},{"id":"29196ac9-3c8a-43c2-9db1-89c5559cd7cc","keyword":"填充","originalKeyword":"填充"},{"id":"008be3e4-c83f-46b9-abae-c8219662cb35","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"wjclxb201105016","title":"模板法Li4Ti5O12纳米线阵列的制备及其机理分析","volume":"26","year":"2011"},{"abstractinfo":"采用电化学方法在水相中合成了一种新型的电活性α-磷酸锆(α-ZrP)/聚苯胺(PANI)阳离子交换材料,考察该膜在含Pb2+溶液中的电控离子交换性能.分别在碳纳米管(CNTs)和PANI纳米纤维修饰的Au基体上制备了不同结构的α-ZrP/PANI杂化膜,并结合电化学石英晶体微天平(EQCM)技术,原位检测杂化膜的生长过程,分析其成膜机理.研究结果表明,在PANI纤维上制备的杂化膜因其三维多孔结构具有更高的离子交换容量;α-ZrP上的P-OH不仅能够为聚苯胺氧化还原提供氢质子,而且对Pb2+表现出良好的吸附选择性,使该膜在中性含Pb2+溶液中表现出良好的电活性.通过控制该杂化膜的氧化还原状态可以实现对重金属Pb2+离子的选择性分离和回收.","authors":[{"authorName":"马旭莉","id":"ec403570-d33e-45c8-b1a4-28ceb8b586a4","originalAuthorName":"马旭莉"},{"authorName":"张权","id":"a39b40d2-c2c8-4d4a-beb4-c8f5618ec16d","originalAuthorName":"张权"},{"authorName":"杜晓","id":"9f1f4c76-1b64-4932-92dd-afda0715e1d1","originalAuthorName":"杜晓"},{"authorName":"郝晓刚","id":"9dd50e73-987c-4e51-a96b-537d5979f846","originalAuthorName":"郝晓刚"},{"authorName":"李修敏","id":"03bf4b95-f791-42e7-b22e-d072c826302e","originalAuthorName":"李修敏"},{"authorName":"乔文磊","id":"9c9a3ed7-d708-4753-aebb-801b69323496","originalAuthorName":"乔文磊"},{"authorName":"李莎莎","id":"afe692a1-a444-4495-a216-4507ed94de9d","originalAuthorName":"李莎莎"}],"doi":"","fpage":"2139","id":"d08c6be1-317f-4115-9f58-dfe0552f4493","issue":"8","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"8379ac89-d5f4-4e02-b38f-b55857619b5b","keyword":"α-ZrP/PANI","originalKeyword":"α-ZrP/PANI"},{"id":"d09fcf5b-fe00-4059-b56a-3501505a08d1","keyword":"分离回收","originalKeyword":"分离回收"},{"id":"df667d5c-4ea3-47f3-bd49-5f8c4aaedb0a","keyword":"电控离子分离","originalKeyword":"电控离子分离"},{"id":"46a993fd-6582-4226-b347-3dd499c27031","keyword":"重金属离子","originalKeyword":"重金属离子"}],"language":"zh","publisherId":"xyjsclygc201608040","title":"α-ZrP/PANI电控离子交换膜对Pb2+的选择性分离","volume":"45","year":"2016"},{"abstractinfo":"采用电沉积法在铂基体上制备出电活性铁氰化铜钴复合膜.在0.1mol/LKNO3溶液中采用循环伏安法并结合电化学石英晶体微天平技术考察了复合膜的电化学行为以及循环寿命.并在0.1mol/L(KNO3+CsNO3)溶液中测定不同混合浓度下复合薄膜的伏安曲线,分析了薄膜对Cs+和K+的选择性.实验表明:铁氰化铜钴复合膜是一种取代型杂化铁氰化物,非单一膜的简单组合.具有良好的离子交换特性及选择性,且循环寿命好于单膜,具备电化学控制离子分离膜的初步特征.","authors":[{"authorName":"李慧","id":"1d60e29e-769d-4aa4-95a6-298f43838c98","originalAuthorName":"李慧"},{"authorName":"郝晓刚","id":"5a2d8e64-2de2-4029-b4e5-1a74fbabaa30","originalAuthorName":"郝晓刚"},{"authorName":"段东红","id":"5c297902-5519-471f-8743-d84b1463f5dd","originalAuthorName":"段东红"},{"authorName":"张忠林","id":"874861a3-231b-4255-89a9-9c1e388001cd","originalAuthorName":"张忠林"},{"authorName":"马旭莉","id":"9a9a38be-acb6-4d7d-acbc-4b13d5c256ca","originalAuthorName":"马旭莉"},{"authorName":"刘世斌","id":"3a366732-8a85-41d4-b811-943aba0392c9","originalAuthorName":"刘世斌"}],"doi":"10.3969/j.issn.1001-3849.2009.03.002","fpage":"5","id":"132d28e7-1d45-40f4-9c00-99b9b3913394","issue":"3","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"b86839ee-3445-4386-85a6-2b1a94fa7e80","keyword":"电化学控制离子分离","originalKeyword":"电化学控制离子分离"},{"id":"f89d7761-d0ee-4a6f-8c33-43d1c81946dd","keyword":"铁氰化铜","originalKeyword":"铁氰化铜"},{"id":"912d9b6b-1dca-4ade-b792-ebfd3a1fb4d6","keyword":"铁氰化钴","originalKeyword":"铁氰化钴"},{"id":"054bfb3f-bad3-40ee-b1c3-0a5e27d2d4fd","keyword":"铁氰化铜钴复合膜","originalKeyword":"铁氰化铜钴复合膜"},{"id":"163b2dac-4f77-4a7c-8de0-8e902c299452","keyword":"电化学石英晶体微天平","originalKeyword":"电化学石英晶体微天平"}],"language":"zh","publisherId":"ddjs200903002","title":"铁氰化铜钴复合膜的制备及其电化学性能","volume":"31","year":"2009"}],"totalpage":24,"totalrecord":231}