欢迎登录材料期刊网

材料期刊网

高级检索

采用铜模浇铸法制备Hf44.5Cu27Ni13.5Ti5Al10块体非晶合金,并对其进行等温退火处理。利用X射线衍射仪(XRD)和透射电镜(TEM)对非晶合金的晶化行为进行了分析,并通过MTS810实验机及场发射扫描电子显微镜(FESEM)研究了等温退火对合金力学性能的影响。结果表明,该非晶合金等温退火相转变进程为:非晶→非晶+Al16 Hf6Ni7→非晶+Al16 Hf6Ni7+CuTi2→CuHf2+CuTi2。合金断裂强度随退火温度的升高先增大后减小。743 K等温退火后,合金断裂强度达到最大值2400 MPa,弹性应变为3.0%。在Hf44.5Cu27Ni13.5Ti5Al10块体非晶合金压缩断口上观察到纳米级韧窝及周期性条纹结构。随着退火温度的升高,周期性条纹间距逐渐减小直至消失,断口形貌呈现为脆性解理断裂的河流状花样。

Hf44.5Cu27Ni13.5Ti5Al10 bulk amorphous alloy was prepared by copper mold casting process,and then isothermal annealing treatment at different temperatures was carried out.Crystallization behavior of the amorphous alloy was investigated by X-ray diffraction(XRD) and transmission electron microscopy(TEM).The effects of isothermal annealing on mechanical properties of the alloy were studied by a MTS810 tester and field emission scanning electron microscopy(FESEM).The results indicate that the crystallization of the alloy proceeds by the process of Am(amorphous state)→Am+Al16Hf6Ni7→Am+Al16Hf6Ni7+CuTi2→ CuHf2+CuTi2.The fracture strength of the alloy presents first increases,then decreases with the increase of annealing temperature.After annealing at 743 K,the fracture strength reaches the maximum value of 2400 MPa with elastic strain of 3.0%.The nanoscale dimples and periodic corrugations are observed on the fracture surface.The corrugation spacing decreases gradually and eventually disappears with the increase of annealing temperature.The fracture morphology is characterized by river shape pattern of brittle cleavage fracture.

参考文献

[1] Akihisa Inoue;Baolong Shen;Hisato Koshiba;Hidemi Kato;Alain R.Yavari .Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties[J].Nature materials,2003(10):661-663.
[2] M.L. MORRISON;R.A. BUCHANAN;A. PEKER .Cyclic-anodic-polarization studies of a Zr_(41.2)Ti_(13.8)Ni_(10)Cu_(12.5)Be_(22.5) bulk metallic glass[J].Intermetallics,2004(10/11):1177-1181.
[3] R.D. Conner;R.B. Dandliker;V. Scruggs .Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites[J].International journal of impact engineering,2000(5):435-444.
[4] Kecskes L J;Edwards B T.Hf-based bulk metallic glasses for kinetic energy penetrators[A].Orlando,Florida,2004
[5] Li C;Saida J;Matsuhita M et al.Precipitation of an icosahedral quasicrystalline phase in Hf59 Nis Cu20 Al10 Ti3 metallic glass[J].Philosophical Magazine Letters,2000,80(09):621-626.
[6] Wang L;Li C;Inoue A .Formation of a single ieosahedral quasicrystaline phase in Hf60 Ni15 Cu10 Ti15 metallic glass[J].Journal of Alloys and Compounds,2001,325:L7-L10.
[7] Li Zhang;Evan Ma;Jian Xu .Hf-based bulk metallic glasses with critical diameter on centimeter scale[J].Intermetallics,2008(4):584-586.
[8] Zhang, L;Shi, LL;Xu, J .Hf-Cu-Ni-Al bulk metallic glasses: Optimization of glass-forming ability and plasticity[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2009(16/17):1005-1007.
[9] G. He;J. Eckert;W. Loser .Composition dependence of the microstructure and the mechanical properties of nano/ultrafine-structured Ti-Cu-Ni-Sn-Nb alloys[J].Acta materialia,2004(10):3035-3046.
[10] 邱胜宝,姚可夫,龚攀.晶化分数对Zr基块体非晶基复相材料力学性能的影响[J].中国科学G辑,2010(06):711-716.
[11] Jiang WH;Pinkerton FE;Atzmon M .Mechanical behavior of shear bands and the effect of their relaxation in a rolled amorphous Al-based alloy[J].Acta materialia,2005(12):3469-3477.
[12] Xi X K;Zhao D Q;Pan M X et al.Periodic corrugation on dynamic fracture surface in brittle bulk metalhc glass[J].Applied Physics Letters,2006,89:181911.
[13] Liang, WZ;Mao, XY;Wu, LZ;Yu, HJ;Zhang, L .Nanoscale ripples on the compressive fracture surface of a bulk metallic glass with microscale crystals[J].Journal of Materials Science,2009(8):2016-2020.
[14] Shen J;Liang W Z;Sun J F .Formation of nanowaves in compressive fracture of a less-brittle bulk metallic glass[J].Applied Physics Letters,2006,89:121908.
[15] Tran NH;Lamb RN .Observation of nanometer waves along fracture surface[J].Chemical Physics Letters,2004(4-6):385-388.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%