欢迎登录材料期刊网

材料期刊网

高级检索

采用粒径分布在450~600 μm的无规明胶颗粒为致孔剂制备乳酸-乙醇酸共聚物(PLGA)海绵体,以纤维蛋白凝胶为负载聚氧化乙烯-b-聚赖氨酸(PEO-b-PLL)/DNA粒子和骨髓间充质干细胞(BMSCs)的传递介质,通过负压将其导入PLGA多孔支架,在凝血酶和Ca2+作用下原位凝胶,构建了一种负载PEO-b-PLL/DNA粒子的PLGA/纤维蛋白凝胶/BMSCs复合支架.系统地表征了复合支架的形貌及微结构.考察了PLGA海绵体和纤维蛋白水凝胶的体外降解性能以及PEOb-PLL/DNA粒子的体外释放行为.重点研究了BMSCs在复合支架中的形态、活性和向软骨细胞分化等生物学性能.研究结果表明:PLGA海绵体具有高孔隙率、高孔连通性;纤维蛋白凝胶均匀填充在PLGA海绵体孔隙中,而PEO-b-PLL/DNA粒子分布在纤维蛋白凝胶三维结构中;体外降解实验显示,8周后PLGA分子量为初始分子量的50%以下,而伴随着纤维蛋白凝胶的快速降解,PEO-b-PLL/DNA粒子被快速释放到溶液中;体外细胞培养结果显示,BMSCs在复合支架体系中具有良好的形态、活性和分泌软骨细胞外基质的能力.

参考文献

[1] Temenoff JS;Mikos AG .Review: tissue engineering for regeneration of articular cartilage.[J].Biomaterials,2000(5):431-440.
[2] 谢德明.药用合成可降解高分子材料研究[J].材料科学与工程学报,2004(04):623-626.
[3] 韩浩,李利伟,秦文贞,全海宇,吴琪琳.ACF/PLGA骨组织工程复合支架的制备及其性能[J].材料科学与工程学报,2012(05):719-723.
[4] 葛建华,吕宇鹏,李木森,张玉军,马晓兵.PLGA组织工程支架材料在SBF中的降解性能和生物矿化性能[J].材料科学与工程学报,2010(05):684-687.
[5] 葛建华,吕宇鹏,周伟岗,马晓兵.PLGA组织工程支架材料在生理盐水中的降解性能[J].材料科学与工程学报,2009(02):198-200.
[6] S.R.Frenkel;P.E.Di Cesare .Scaffolds for articular cartilage repair[J].Annals of Biomedical Engineering,2004,32:26-34.
[7] E.J.Caterson;W.J.Li;L.J.Nesti et al.Polymer/alginate amalgam for cartilage tissue engineering[J].Annals of the New York Academy of Sciences,2002,961:134-138.
[8] Wang W;Li B;Yang J;Xin L;Li Y;Yin H;Qi Y;Jiang Y;Ouyang H;Gao C .The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs.[J].Biomaterials,2010(34):8964-8973.
[9] Wei Wang,Dan Li,Mei-cong Wang,Yang-lin Li,Chang-you Gao.A HYBRID SCAFFOLD OF POLY(LACTIDE-CO-GLYCOLIDE) SPONGE FILLED WITH FIBRIN GEL FOR CARTILAGE TISSUE ENGINEERING[J].高分子科学(英文版),2011(02):233-240.
[10] Itaka K.;Yamauchi K.;Harada A.;Nakamura K.;Kawaguchi H.;Kataoka K. .Polyion complex micelles from plasmid DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer as serum-tolerable polyplex system: physicochemical properties of micelles relevant to gene transfection efficiency[J].Biomaterials,2003(24):4495-4506.
[11] Y.H.Gong;Q.L.Zhou;C.Y.Gao et al.In vitro and in vivo degradability and cytocompatibility of poly(1-1actic acid) scaffold fabricated by a gelatin particle leaching method[J].Acta Biomaterialia,2007,3(04):531-540.
[12] V.Karageorgiou;D.Kaplan .Porosity of 3D biomaterial scaffolds and osteogenesis[J].Biomaterials,2005,26:5474-5491.
[13] Lee JH.;Lee JW.;Lee HB.;Khang G. .Interaction of different types of cells on polymer surfaces with wettability gradient[J].Journal of Colloid and Interface Science,1998(2):323-330.
[14] M.Reyes;T.Lund;T.Lenvik et al.Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells[J].Blood,2009,113:2370-2370.
[15] Patil, M.L.;Zhang, M.;Minko, T. .Multifunctional triblock nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing[J].ACS nano,2011(3):1877-1887.
[16] Park JS;Yang HN;Woo DG;Jeon SY;Do HJ;Lim HY;Kim JH;Park KH .Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX trio SOX5, 6, and 9 genes complexed with PEI-modified PLGA nanoparticles.[J].Biomaterials,2011(14):3679-3688.
[17] Palmer GD;Steinert A;Pascher A;Gouze E;Gouze JN;Betz O;Johnstone B;Evans CH;Ghivizzani SC .Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro.[J].Molecular therapy: the journal of the American Society of Gene Therapy,2005(2):219-228.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%