欢迎登录材料期刊网

材料期刊网

高级检索

在与传统LED散热基板散热性能比较的基础上,分析了国内外功率型LED散热基板的研究现状,介绍了金属芯印刷电路板、陶瓷基板、金属绝缘基板和金属基复合基板的结构特点、导热性能及封装应用,指出了功率型LED基板材料的发展趋势及需要解决的问题.

On the base of comparison with traditional packaging materials, the present technical research on heat-release substrates of high power LEDs is analyzed. Some new style of substrates(including metal core printed cir-cuit board, ceramic substrates, insulated metal substrates and metal matrix composite substrate) are introduced in the structural characteristics,thermal conductivity and packaging applications. In addition, the research trend and prob-lerns to be solved at present of packaging materials are pointed out.

参考文献

[1] 刘一兵,丁洁.功率型LED封装技术[J].液晶与显示,2008(04):508-513.
[2] 殷录桥,李清华,张建华.提高大功率LED散热和出光封装材料的研究[J].半导体技术,2008(04):281-285.
[3] 李华平,柴广跃,彭文达,牛憨笨.大功率LED的封装及其散热基板研究[J].半导体光电,2007(01):47-50.
[4] 李华平,柴广跃,彭文达,刘文,牛憨笨.AlN薄膜覆Al基板的物理特性[J].电子元件与材料,2007(10):54-56.
[5] 田大垒,关荣锋,王杏.新型封装材料与大功率LED封装热管理[J].电子元件与材料,2007(08):5-7,19.
[6] Curran JA;Clyne TW .The thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesium[J].Surface & Coatings Technology,2005(2/3):177-183.
[7] Curran JA;Clyne TW .Thermo-physical properties of plasma electrolytic oxide coatings on aluminium[J].Surface & Coatings Technology,2005(2/3):168-176.
[8] 关振铎;张中太;焦金生.无机材料物理[M].北京:清华大学出版社,2004:44.
[9] 张强,孙东立,武高辉.电子封装基片材料研究进展[J].材料科学与工艺,2000(04):66-72.
[10] 赵赞良,唐政维,蔡雪梅,李秋俊,张宪力.比较几种大功率LED封装基板材料[J].装备制造技术,2006(04):81-84.
[11] Markstein Howard W .A wide choice of materials for MCMs[J].Electronic Packaging and Production,1997,37(03):34.
[12] 石功奇;王健;丁培道 .陶瓷基片材料的研究现状[J].功能材料,1994,24(02):176.
[13] M. Imura;K. Nakano;T. Kitano;N. Fujimoto;N. Okada;K. Balakrishnan;M. Iwaya;S. Kamiyama;H. Amano;I. Akasaki;K. Shimono;T. Noro;T. Takagi;A. Bandoh .Microstructure of thick AlN grown on sapphire by high-temperature MOVPE[J].Physica Status Solidi, A. Applied Research,2006(7):1626-1631.
[14] Harris J H et al.On the nature of the oxygen-related defection aluminum nitride[J].Journal of Materials Research,1990,5(08):1763.
[15] 吴音;周和平;缪卫国 .流延法制作AlN陶瓷基片工艺[J].电子元件与材料,1996,15(01):20.
[16] Park J K;Shin H D;Park Y S.A suggestion for high power LED package based on LTCC[A].San Diego,California,USA:IEEE,2006:1070.
[17] Mariya Ivanova;Yvan Avenas;Christian Schaeffer;Jean-Bernard Dezord;Juergen Schulz-Harder .Heat Pipe Integrated in Direct Bonded Copper (DBC) Technology for Cooling of Power Electronics Packaging[J].IEEE Transactions on Power Electronics,2006(6):1541-1547.
[18] Juergen Schulz-Harder;Andreas Utz-Kistner .Advantages and New Development of DBC (Direct Bond Copper) Substrates[J].Advancing Microelectronics,2005(6):8,10-12-0.
[19] 程阜民 .混合微电子技术用关键材料的新进展[J].电子工艺技术,1995,16(04):21.
[20] Paulasto M;Wieser H;Hauck T.Multichip SMT power package for automotive market[A].Las Vegas,NV,USA:IEEE,2000:925.
[21] Rafael C J;J(o)rg B;Hermann O.Optimized heat transfer and homogeneous color converting for ultra high brightness LED package[A].France:Society of Photo-optieal Instrumentation Engineers,2006:61980B.
[22] 穆道斌,金莹,马莒生.铝金属基板的制备及性能[J].稀有金属,2003(03):335-338.
[23] Shin S H;Lee J H;Sohn B I.PCS power amplifier module package using selectively ano-dized aluminum sub strate[A].Manchester,UK,2006:541.
[24] Fan X Y;Chan E;Yuen J.Microstructure and adhesion strength of copper substrate after oxidation with a newly developed chemical solution[A].香港,2000:220.
[25] Kneissl M.;Wong W.S.;Treat D.W.;Teepe M.;Miyashita N.;Johnson N.M. .Continuous-wave operation of InGaN multiple-quantum-well laserdiodes on copper substrates obtained by laser liftoff[J].IEEE journal of selected topics in quantum electronics: A publication of the IEEE Lasers and Electro-optics Society,2001(2):188-191.
[26] Chu J T;Liang W D.Large emitting area CaN based light emitting diode fabric ated on conducting copper substrates[A].San Francisco,California,USA,2004:282.
[27] 邝海,刘军林,程海英,江风益.转移基板材质对Si衬底GaN基LED芯片性能的影响[J].光学学报,2008(01):143-145.
[28] Doan T;Chu C et al.Vertical GaN based light emitting diodes on metal alloy substrate for solid state ligh-ting application[A].San Diego C A,2006,6134(0G):1.
[29] Cheng Chaochen;Chu Chenfu;Liu Wenhuan et al.Highly efficient GaN vertical light emitting diode on metal alloy substrate from near UV to green color for solid state lighting application[A].San Diego,California,USA,2006,6337(03):1.
[30] Chuong Anh Tran;Chen-Fu Chu;Chao-Chen Cheng;Wen-Huan Liu;Jiunn-Yi Chu;Hao-Chun Cheng;Feng-Hsu Fan;Jui-Kang Yen;Trung Doan .High brightness GaN vertical light emitting diodes on metal alloyed substrate for general lighting application[J].Journal of Crystal Growth,2007(0):722-724.
[31] Cheng Chaochen;Chu Chenfu;Liu Wenhuan et al.Reliability of CaN-based vertical light-emitting diodes on metal alloy substrate for solid state lighting application[A].San Diego,California,USA,2006,6337(05):1.
[32] Carl Zweben.Metal-matrix composites for electronic packaging[J].JOM-Journal of the Minerals Metals and Materials Society,1992(07):15.
[33] 张迎九;王志法;吕维洁 等.金属基低膨胀高导热复合材料[J].材料导报,1997,11(03):52.
[34] 刘一兵,黄新民,刘国华.基于功率型LED散热技术的研究[J].照明工程学报,2008(01):69-73.
[35] Dave S .Developments in thermal materials and processes for semiconductor packaging[J].Advancing Microelectronics:Inside the Multichip Module hybrid and Surface Mount Industries,2005,32(06):4.
[36] Rao B.S.;Hemambar Ch.;Pathak A.V.;Patel K.J.;Rodel J.;Jayaram V. .Al/SiC carriers for microwave integrated circuits by a new technique of pressureless infiltration[J].IEEE transactions on electronics packaging manufacturing: A publication of the IEEE Components, Packaging, and Manufacturing Technology Society,2006(1):58-63.
[37] Alcoa .Al company of american begins product sampling of Al-SiC composites[J].MMM CIAC News Lett,1995,3(03):9.
[38] Occhionero M A;Adams R W.AlSiC and AlSiC hybrid composites for flip chips,optoeleetronics,power,and high brightness LED thermal management solutions[A].广东深圳,2005:576.
[39] Theo T;Vicky L.Thermal management in color variable multi-chip LED modules[A].Dallas,Texas,USA:IEEE,2006:173.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%