功能材料, 2003, 34(3): 258-261.
纳米结构的自组装高分子研究进展
何光国 1, , 曾繁涤 2, , 熊鹏 3, , 刘曼西 4, , 师汉民 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"聚酯型聚氨酯预聚体是由聚酯多元醇与过量的纯二苯基甲烷二异氰酸酯(MDI)反应制得的,制备的部分聚酯型聚氨酯预聚体在合成过程中或常温放置过程中容易出现浑浊现象。粒径分析仪测试发现:(1)聚酯型预聚体由透明变浑浊的过程中,其颗粒粒径逐渐增大;(2)在预聚体的合成过程中,添加适量的苯甲酰氯可以有效地抑制聚酯型预聚体浑浊现象的发生,预聚体可以以透明液体状态常温放置三个月以上;(3)在加入苯甲酰氯基础上加入适量的特种添加剂能够进一步抑制预聚体中颗粒的长大,提高预聚体的储存稳定性。","authors":[{"authorName":"吴义春","id":"73755e78-6b83-414d-8074-41abee1ff8e6","originalAuthorName":"吴义春"},{"authorName":"徐志磊","id":"ce88fd7e-1506-4081-821e-52b0c197d651","originalAuthorName":"徐志磊"},{"authorName":"李春兰","id":"374a8add-e250-4fa6-b2e0-e30c3526f341","originalAuthorName":"李春兰"},{"authorName":"雷蕾","id":"a9cf5daa-238f-4fac-95c0-f8e6e7ef38a8","originalAuthorName":"雷蕾"}],"doi":"","fpage":"114","id":"6d1c4403-f2af-4394-9afe-d867fb71cb21","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"3810f9db-adbd-4ffd-8583-0dcbf0225cab","keyword":"聚酯型","originalKeyword":"聚酯型"},{"id":"e5c6ed2b-a917-42a4-982d-7f623df8395e","keyword":"预聚体","originalKeyword":"预聚体"},{"id":"902a99e7-98ca-4510-8d00-b2544d3175a2","keyword":"粒径分析","originalKeyword":"粒径分析"},{"id":"44e8b531-a5d1-40ea-b72b-3a9678181e4a","keyword":"浑浊","originalKeyword":"浑浊"},{"id":"fafc16f1-57ea-4e17-bfb9-35ddad801132","keyword":"储存稳定性","originalKeyword":"储存稳定性"}],"language":"zh","publisherId":"gfzclkxygc201204030","title":"粒径分析仪在聚酯型聚氨酯预聚体制备中的应用","volume":"28","year":"2012"},{"abstractinfo":"使用激光粒度仪的干法和湿法分别测试了钛白粉、滑石粉、石墨烯的粒径分布,比较了2种测试方法结果的异同.讨论了方法合适的测试条件:涂料中的干粉样品适合干法测试,液态样品适合湿法测试.在一定的仪器设置条件下,使用于法测试了钛白粉、滑石粉、石墨烯的粒径分布,使用湿法测试了乳液和钛白粉、石墨烯的粒径分布,并比较了测试结果的重复性.试验表明:干法和湿法测试结果都具有较高的重复性,能够准确测试出在涂料中添加的各种粒子的粒径分布.","authors":[{"authorName":"刘培炎","id":"c3146cee-ef97-41c5-abd9-9d65b73a8697","originalAuthorName":"刘培炎"}],"doi":"","fpage":"58","id":"5c69e222-3f1e-4edd-982e-cbe4d947312a","issue":"12","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"732fa066-91ed-4b5e-a227-0deabfa691f2","keyword":"涂料","originalKeyword":"涂料"},{"id":"6439a50f-edd7-4b5e-8149-290c10ff0afb","keyword":"粒径分析","originalKeyword":"粒径分析"},{"id":"91ee1c9c-12ea-4ec2-9cf9-082948e21699","keyword":"干法","originalKeyword":"干法"},{"id":"8ff86b84-555c-4c08-82ce-deee95736d03","keyword":"湿法","originalKeyword":"湿法"},{"id":"29d31bdf-3f02-4a99-9103-9cdd7040a65b","keyword":"激光粒度仪","originalKeyword":"激光粒度仪"}],"language":"zh","publisherId":"tlgy201612010","title":"激光粒度仪干法和湿法测试在涂料粒径分析中的应用","volume":"46","year":"2016"},{"abstractinfo":"水泥颗粒形状特征对混凝土稳定性、强度和持久性有重要影响.提出利用背景去除、广义结构元和扩展形态学滤波等数字图像处理方法对水泥微粒的数字显微图像进行分析,新的方法能快速分析水泥颗粒的形状和粒径的分布,与激光分析方法的一致性好,并且能比传统方法提供更多的微粒形状信息.","authors":[{"authorName":"蓝章礼","id":"411bfc84-2a23-4f6f-909d-3537536638d1","originalAuthorName":"蓝章礼"},{"authorName":"梁爽","id":"45e824d8-5149-445c-817d-b93c00b9ea0e","originalAuthorName":"梁爽"},{"authorName":"田文玉","id":"2a629782-b2e5-45a7-86d2-346ef99a893d","originalAuthorName":"田文玉"}],"doi":"","fpage":"88","id":"3f764f54-d3f5-4626-95cd-e45064566448","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a275107d-61f6-47bf-af6a-2ca591a7b526","keyword":"水泥颗粒","originalKeyword":"水泥颗粒"},{"id":"0dc847b2-2e53-4b2d-a290-522f57cf3dee","keyword":"显微图像","originalKeyword":"显微图像"},{"id":"1460e65a-e4af-4a54-87a9-1286033a7fe2","keyword":"形状学滤波","originalKeyword":"形状学滤波"},{"id":"f1f12122-009e-4878-b2e9-d1d378b956bc","keyword":"形状分析","originalKeyword":"形状分析"},{"id":"bd3dc153-0f55-4d3a-8910-be0f1bf5738d","keyword":"粒径分析","originalKeyword":"粒径分析"}],"language":"zh","publisherId":"cldb200810021","title":"基于数字显微图像处理的水泥粒度分析","volume":"22","year":"2008"},{"abstractinfo":"高岭石的径厚比,在高岭土的许多应用领域都是一个重要参数,目前尚未有很好的仪器和技术对其进行精确测量。以电阻法为原理对颗粒粒度的测量,反映了电阻的变化与颗粒体积和形貌之间的关系,可以此为基础进行高岭石径厚比计算。通过对以电阻法为工作原理的库尔特仪测试输出数据和图形的详细分析,发现其输出的电脉冲高度反映颗粒的体积,电脉冲宽度反映通过小孔的颗粒长度,并通过与标准球形颗粒脉冲数据进行对比,建立了高岭石径厚比测算公式n+ W-Wn AR=32( Wn+1-Wn )3 L通过实例分析,验证了该方法的精确性。","authors":[{"authorName":"刘钦甫","id":"9ab5e185-fde3-4aa7-a084-754308264a84","originalAuthorName":"刘钦甫"},{"authorName":"张志亮","id":"d5cbb031-665f-43cc-a56d-1da13a14ec0a","originalAuthorName":"张志亮"},{"authorName":"程宏飞","id":"8ba72634-668f-4cb0-a753-6f2353caa98e","originalAuthorName":"程宏飞"},{"authorName":"江发伟","id":"64a784aa-99dd-4f5f-965d-bbad4bf41020","originalAuthorName":"江发伟"}],"doi":"10.3969/j.issn.1001-9731.2014.18.014","fpage":"18067","id":"a3c2d7c2-3c8d-41ed-9c86-212a519becc9","issue":"18","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"9bcceeef-a47d-4d16-a6ff-1df0aaefa876","keyword":"高岭石","originalKeyword":"高岭石"},{"id":"8d5819ff-eebc-4202-bd32-2cc5e77adda8","keyword":"径厚比","originalKeyword":"径厚比"},{"id":"9a03f235-dd38-41c5-b1c8-549b1dcbc42a","keyword":"电阻法","originalKeyword":"电阻法"},{"id":"0bf0f052-45f1-46db-b4ed-50599beaf043","keyword":"库尔特计数仪","originalKeyword":"库尔特计数仪"},{"id":"7e56d25b-5de8-479a-b0a9-dce18eddf0dd","keyword":"粒径分析","originalKeyword":"粒径分析"},{"id":"3f01b8e8-a3c5-42c2-a483-90fb4e602fbe","keyword":"脉冲信号","originalKeyword":"脉冲信号"}],"language":"zh","publisherId":"gncl201418014","title":"利用电阻法原理测算高岭石的径厚比?","volume":"","year":"2014"},{"abstractinfo":"采用化学还原法制备微米银粉且用正交试验对工艺进行了优化.以聚乙二醇(PEG- 10000)为分散剂和乙醇为消泡剂,以抗坏血酸在超声波下和碱性环境下直接还原硝酸银得到银溶胶,经过滤、洗涤、恒温干燥处理得到银粉.研究滴加顺序、消泡剂用量、pH值对银粉粒径的影响,利用SEM、XRD对银粉进行分析.结果表明,在0.3 mol/L硝酸银溶液和25 mL消泡剂乙醇、T=40℃和pH=7条件下,超声波振荡时间10 min,可制备粒径1.13 μm左右,粒径分布窄的球形银粉.","authors":[{"authorName":"郑娅","id":"04925598-a83b-401b-828f-01b11710bbd5","originalAuthorName":"郑娅"},{"authorName":"甘国友","id":"4648acb1-2e9c-429d-b2e8-4d2181a76b95","originalAuthorName":"甘国友"},{"authorName":"严继康","id":"d43d4fbf-ea72-40c3-913b-6cd2361542dd","originalAuthorName":"严继康"},{"authorName":"杜景红","id":"5bf045d2-7130-4c4c-91f5-bca3679835d7","originalAuthorName":"杜景红"},{"authorName":"易健宏","id":"be36fdf1-930f-4faa-af04-0d76db718a17","originalAuthorName":"易健宏"},{"authorName":"陈忠文","id":"ea4b9b65-60a3-44a5-bb2d-3d96816c01a2","originalAuthorName":"陈忠文"},{"authorName":"张磊","id":"38846075-7900-4af7-a72f-bb2da7fe5462","originalAuthorName":"张磊"}],"doi":"","fpage":"1623","id":"17557613-13c2-4c4e-814f-57fbffab4070","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4ee89e38-a02f-4535-acb9-e99fd632ace0","keyword":"化学还原法","originalKeyword":"化学还原法"},{"id":"e0660ff0-a29b-49e3-8724-6d26f0a5560c","keyword":"分散剂","originalKeyword":"分散剂"},{"id":"ec302c37-8a35-4e6a-bc6e-e90395b518f8","keyword":"优化分析","originalKeyword":"优化分析"},{"id":"80ee64a8-8d37-4bc2-a3af-f54099ef5a82","keyword":"球形银粉","originalKeyword":"球形银粉"}],"language":"zh","publisherId":"xyjsclygc201209025","title":"微米球形银粉粒径的优化分析","volume":"41","year":"2012"},{"abstractinfo":"通过原位聚合法,以不同相对分子质量的苯乙烯马来酸酐共聚物水溶液(SMAH)为分散剂,石蜡为芯材,三聚氰胺甲醛(MF)树脂为壳材制备了石蜡微胶囊.利用聚焦光束反射测量仪在线检测了体系的粒径分布及不同粒径范围的粒子数,微胶囊样品形貌采用扫描电镜表征.通过研究认为,微胶囊在成囊过程中,三聚氰胺甲醛树脂预聚体先在溶液中形成小粒子,小粒子被石蜡表面的分散剂吸附并沉积于石蜡液滴表面,缩聚形成壳层.SMAH分散剂的相对分子质量越大,其分散能力越强,得到的微胶囊平均粒径越小,粒径分布较窄.","authors":[{"authorName":"徐梦漪","id":"7fdb1f66-6c03-4007-86cc-6c2806ba4619","originalAuthorName":"徐梦漪"},{"authorName":"刘莹","id":"903bb669-e211-4a1e-92d9-4f44608bf3cf","originalAuthorName":"刘莹"},{"authorName":"林书乐","id":"d932fa22-fc2c-48ff-905b-85c758b2622f","originalAuthorName":"林书乐"},{"authorName":"周亮","id":"06944b9c-7aed-434d-a669-d2e02b1420c2","originalAuthorName":"周亮"}],"doi":"","fpage":"106","id":"40d644d6-14f4-4b3c-b910-6730c046dc78","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"5e4c1445-4737-4f7e-8185-bc9304c2fcbf","keyword":"微胶囊","originalKeyword":"微胶囊"},{"id":"de902433-0517-4f5e-84e9-503da657e79e","keyword":"聚焦光束反射测量仪","originalKeyword":"聚焦光束反射测量仪"},{"id":"ba3969dd-8ec7-432c-92b5-f1a3310dfb31","keyword":"成囊过程","originalKeyword":"成囊过程"},{"id":"3f5c7812-2c91-4000-8bdb-b494d4e37075","keyword":"粒径分布","originalKeyword":"粒径分布"}],"language":"zh","publisherId":"gfzclkxygc201503021","title":"基于在线粒径分析技术的微胶囊成囊过程分析","volume":"31","year":"2015"},{"abstractinfo":"采用微磁有限元方法,分析了粒径分布对垂直磁记录介质中过渡区噪声性能的影响.计算结果表明,颗粒间相互相互耦合作用可以增加介质的矫顽力和剩磁矩形比,使过渡区宽度有稍许减小,同时也使垂直于记录轨道方向的关联长度有一定增加.结果还表明,粒径为Voronoi分布的介质的过渡区噪声高于粒径为一致分布的介质,且随着颗粒间相互交换耦合作用增加和记录密度的提高,噪声的差值也会变大.因此,可以通过采用粒径具有一定分布的介质来减弱颗粒间相互交换耦合作用和记录密度对介质过渡区噪声的影响.","authors":[{"authorName":"李鹏","id":"e2e2c357-4565-45ef-bcd3-c676c3d70b38","originalAuthorName":"李鹏"},{"authorName":"程晓敏","id":"21fdbefd-c3f5-4f23-8fa2-628946d4e219","originalAuthorName":"程晓敏"},{"authorName":"杨晓非","id":"cd089a06-6ce4-4e02-a346-a5f9d19acd8e","originalAuthorName":"杨晓非"}],"doi":"","fpage":"1095","id":"65a3a59c-d81c-426f-995c-9e74e5081e2d","issue":"7","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ab9ab5fb-85a3-46af-96fe-78bbe8e1061c","keyword":"粒径分布","originalKeyword":"粒径分布"},{"id":"d5da8ae5-6093-4af3-bbd8-0bf13810cb4f","keyword":"过渡区噪声","originalKeyword":"过渡区噪声"},{"id":"63a823b1-19ca-47a1-b71b-43268be753de","keyword":"微磁学","originalKeyword":"微磁学"},{"id":"df2dae7f-7e6c-4d35-b1f5-23e38e4c603d","keyword":"颗粒间相互交换耦合","originalKeyword":"颗粒间相互交换耦合"}],"language":"zh","publisherId":"gncl200807011","title":"粒径分布对介质过渡区噪声影响的微磁学分析","volume":"39","year":"2008"},{"abstractinfo":"为了分析橡胶颗粒特性对橡胶混凝土坍落度、强度、抗渗性和抗冻性能等的影响,采用试验分析的方法,通过对比分析橡胶颗粒的掺量、粒径对橡胶混凝土的坍落度、强度、抗渗性和抗冻性能的影响,以此作为以橡胶作为集料的混凝土工作性能的评价指标.根据试验数据:橡胶集料混凝土的抗压试验测试最适宜的加载速度为0.015 ~0.1 MPa/s;相同的橡胶粉含量,随着粒径的增加,其抗压强度呈现降低的趋势;在相同粒径条件下,抗渗性能随粒径增大而增强,抗渗性能随橡胶总体含量增多而增强;当掺加橡胶集料的混凝土试件的质量损失率低于5%、强度损失率低于20%的前提下,经过100次的冻融循环后,在一定的范围内增加橡胶颗粒的掺量,可以提高橡胶集料混凝土试件的抗冻性能,其最佳掺量为30 kg/m3.","authors":[{"authorName":"路沙沙","id":"36a7bcbf-1cf8-4aac-9f92-0269fba7f09c","originalAuthorName":"路沙沙"},{"authorName":"麻凤海","id":"f28c218a-8d26-4e06-96e6-aeaf66e7f6ab","originalAuthorName":"麻凤海"},{"authorName":"邓飞","id":"170fa26d-0d5b-45c0-abf2-82413196b3ed","originalAuthorName":"邓飞"}],"doi":"","fpage":"2477","id":"d7d5d0e0-b9c3-4b0e-80b6-f295d047c002","issue":"10","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"ced2c669-7917-45d8-adcd-b94b6db8f267","keyword":"抗渗性能","originalKeyword":"抗渗性能"},{"id":"1ed4c6dd-6ff9-41e0-8bf4-134cde362471","keyword":"抗冻性能","originalKeyword":"抗冻性能"},{"id":"5f473663-cc76-4554-a185-ff593254be7e","keyword":"橡胶颗粒","originalKeyword":"橡胶颗粒"},{"id":"7bd6a34d-9d77-4e9c-bb32-064836d273c8","keyword":"微观分析","originalKeyword":"微观分析"},{"id":"dba7f3eb-df8d-4b6b-9113-b3e7ebf77075","keyword":"粒径","originalKeyword":"粒径"}],"language":"zh","publisherId":"gsytb201410006","title":"橡胶颗粒掺量、粒径影响橡胶混凝土性能的试验分析","volume":"33","year":"2014"},{"abstractinfo":"采用激光粒度分析仪对粉煤灰提取后的工业废物硅酸钙样品进行分析,结果表明硅酸钙样品的平均粒径在35.36 μm,分选性极好,样品频率曲线形态近似正态分布,峰态呈中等峰态.采用扫描电镜和X-射线能谱对硅酸钙样品表面进行分析,结果表明硅酸钙粒径大小不一、表面疏松多孔,由Ca、Si、O、C元素组成.设计正交实验研究了pH、反应温度、硅酸钙投加量以及六价铬溶液初始浓度对于反应去除率的影响,结果表明影响顺序为硅酸钙投加量>溶液浓度>反应温度> pH,反应在pH =6,反应温度30℃,硅酸钙投加量为30g/L,溶液浓度为1 mg/L的条件下取得最大去除率,六价铬去除率为16.51%.等温吸附实验结果表明Langmuir和Freundlich等温吸附模型均有较好模拟,硅酸钙对Cr6+的最大吸附容量为0.351 mg/g.","authors":[{"authorName":"秦泽敏","id":"d6060035-1490-45a3-8360-86b314e03a04","originalAuthorName":"秦泽敏"},{"authorName":"董黎明","id":"5a218a03-44e5-48fa-b4bb-4b3657b7779a","originalAuthorName":"董黎明"},{"authorName":"张艳萍","id":"bad42ed9-b9d4-4c2e-9480-4383215629cc","originalAuthorName":"张艳萍"},{"authorName":"赵钰","id":"27e6e594-a178-4391-8622-a05863f732fc","originalAuthorName":"赵钰"},{"authorName":"周恋彤","id":"d8d89d0c-4588-47e4-9861-a29ec0cd19fd","originalAuthorName":"周恋彤"}],"doi":"","fpage":"2828","id":"b3a82e99-4835-46f9-a5ac-8bea8ce62403","issue":"11","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"111e8d44-52f3-417c-93ce-95d2cdf75c92","keyword":"硅酸钙","originalKeyword":"硅酸钙"},{"id":"dfb87e89-7db0-4f8d-a37e-656d2cc87184","keyword":"粒径","originalKeyword":"粒径"},{"id":"416bdf43-cca6-404c-9d5b-c7aaaf038855","keyword":"六价铬","originalKeyword":"六价铬"},{"id":"0c23d4b6-e5ab-451d-a831-bc1f38266e22","keyword":"吸附","originalKeyword":"吸附"}],"language":"zh","publisherId":"gsytb201411011","title":"硅酸钙粒径分析及吸附去除水中六价铬的研究","volume":"33","year":"2014"},{"abstractinfo":"采用动态激光光散射(DLS)研究了单体、引发剂和乳化剂用量对微乳液聚合PMMA的粒径及分布、分子量的影响.DLS分析结果表明,PMMA的粒径为25~60nm,M-w 为1×106~5×106.随单体用量增大,PMMA粒径变大;随引发剂用量增大,PMMA粒径变小;PMMA粒径分布随单体和引发剂用量提高而变宽.在8%~12%(质量分数)范围内,随乳化剂用量增大PMMA粒径增大,分布变窄,然后随着乳化剂用量的进一步增加,PMMA粒径减小.引发剂用量减少和乳化剂用量增加均使PMMA分子量提高.FT-IR和DSC分析结果表明,采用微乳液聚合方法制备的PMMA是以间规立构为主,PMMA分子链的局部有序性得到了提高.","authors":[{"authorName":"吴石山","id":"7fec9dac-d627-4e27-97f5-5422b6472a15","originalAuthorName":"吴石山"},{"authorName":"吴静","id":"065a7dcd-f2ef-4184-a1c5-4b71c8b96b85","originalAuthorName":"吴静"},{"authorName":"韦亚兵","id":"b033db22-a77a-49f0-a874-72bcd99eeac8","originalAuthorName":"韦亚兵"},{"authorName":"郑昌仁","id":"71f3827e-d5c0-4af4-b242-a1a9faafdb3f","originalAuthorName":"郑昌仁"}],"doi":"","fpage":"127","id":"2a39d7b1-e1e4-4127-9d40-7d4863fdaeca","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"44a2bec7-16e8-4776-9673-f8a3aaea961d","keyword":"微乳液聚合","originalKeyword":"微乳液聚合"},{"id":"f5aca793-1f7c-42a0-b7ab-5eec7629aefe","keyword":"PMMA","originalKeyword":"PMMA"},{"id":"88d614d5-2a39-4fc2-b0eb-84b1554f6fb6","keyword":"粒径及分布","originalKeyword":"粒径及分布"},{"id":"f0c2c738-37d1-4031-be0d-2f43eb5968da","keyword":"分子量","originalKeyword":"分子量"},{"id":"70bd0584-be5e-4193-a0f2-ba08fbc84309","keyword":"结构","originalKeyword":"结构"}],"language":"zh","publisherId":"gncl200401044","title":"O/W型微乳液法制备PMMA纳米粒子研究--PMMA粒径及分布、分子量和结构分析","volume":"35","year":"2004"}],"totalpage":8830,"totalrecord":88299}