{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"风能作为替代世界传统能源的清洁能源之一,近几年来已在我国发展迅猛.我国已建或规划建设的风场,大多处在高山及边疆区域,风电机组必然面临覆冰的考验.风电叶片覆冰严重影响风电叶片的气动性能、载荷和功率输出.本文概括阐述了叶片表面覆冰起因、覆冰区域及覆冰危害,并概括讨论了各种除冰方法.","authors":[{"authorName":"王伟","id":"cc9b17a2-928e-42a7-bf85-d2cbd4118eba","originalAuthorName":"王伟"},{"authorName":"侯学杰","id":"461404e1-f166-4403-81d5-68511e364964","originalAuthorName":"侯学杰"},{"authorName":"管晓颖","id":"939a59e0-406e-4492-8657-c350a6960bd1","originalAuthorName":"管晓颖"},{"authorName":"黎华","id":"4444fb02-f401-40c5-9f29-2ebbde12d8c2","originalAuthorName":"黎华"},{"authorName":"林明","id":"3b85ee99-7c77-4776-b232-058ab38a2d98","originalAuthorName":"林明"}],"doi":"","fpage":"90","id":"15d59ac8-9dc9-47cc-b9c1-a2770c622315","issue":"1","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"e293134e-5864-46a4-80f1-c66db4fd9216","keyword":"风电叶片","originalKeyword":"风电叶片"},{"id":"89314683-d9ea-4951-940c-69037971d025","keyword":"除冰技术","originalKeyword":"除冰技术"},{"id":"ba92b64d-24ba-4197-8346-c45fdcf0b7e7","keyword":"研究进展","originalKeyword":"研究进展"}],"language":"zh","publisherId":"blgfhcl201401020","title":"风电叶片除冰技术的研究进展","volume":"","year":"2014"},{"abstractinfo":"针对当今风电叶片面临的电热除冰能耗巨大及疏水涂层除冰效果欠佳的问题,提出了一种结合电热元件除冰与疏水涂层除冰共同优势的复合除冰系统.借助涂层疏水性表征手段和冰层粘结强度测试实验,分析了疏水性对冰层剪切附着力的影响,最后通过特定环境下的除冰模拟实验对复合除冰系统的可行性与可靠性进行了评估.该除冰系统不但满足风电叶片的除冰要求,而且可降低除冰能耗,起到节能作用,可应用于降低冰脊对叶片造成的损害.","authors":[{"authorName":"王延明","id":"22c4093f-f97b-440b-bee6-572e8a9d60e8","originalAuthorName":"王延明"},{"authorName":"倪爱清","id":"a10b32da-339e-4920-ba95-90fe3948c5ab","originalAuthorName":"倪爱清"},{"authorName":"王继辉","id":"b9dd3f80-0343-40d9-b0a7-746498091ef6","originalAuthorName":"王继辉"},{"authorName":"胡海晓","id":"738ec0e2-5a22-4056-b9aa-e2e6123d84cc","originalAuthorName":"胡海晓"},{"authorName":"牟书香","id":"f33f0729-c25d-4cbc-9eb8-46058f3bb203","originalAuthorName":"牟书香"}],"doi":"","fpage":"68","id":"61c9abf1-1864-4eda-9cff-3e3005a30676","issue":"8","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"c86f9a5a-e94c-4909-9a61-800ae10c199e","keyword":"风电叶片","originalKeyword":"风电叶片"},{"id":"bd99c698-ea35-4506-9f8e-673f54c7d259","keyword":"复合除冰","originalKeyword":"复合除冰"},{"id":"1be0953e-9859-4951-aed5-314a95bb5bd3","keyword":"能耗","originalKeyword":"能耗"},{"id":"3241fd93-8e26-402b-803a-563ac56be850","keyword":"冰脊","originalKeyword":"冰脊"}],"language":"zh","publisherId":"blgfhcl201608012","title":"电热元件-疏水涂层复合除冰系统的实验研究","volume":"","year":"2016"},{"abstractinfo":"采用快冻法测定了高性能混凝土(High Performance Concrete,HPC)在水、浓度为3.5%的NaCl除冰盐、3.5%~25%的醋酸钙镁(Calcium magnesium acetate,CMA,机场道面除冰液)、25%的乙二醇(飞机除冰液)和商品飞机除冰液中的抗冻性.结果表明,在3.5% CMA溶液中,HPC抗冻性比水中冻融提高了1.09倍,其冻融破坏特征与水中冻融一样,均属于内部微裂纹扩展,完全不同于HPC在3.5% NaCl溶液中的盐冻表面剥蚀.在浓度为25%的条件下,CMA机场道面除冰液对HPC无冻融破坏作用,而乙二醇飞机除冰液、尤其是商品飞机除冰液对HPC有明显的冻融破坏作用.因此,CMA机场道面除冰液能够有效地延缓HPC的冻融破坏.","authors":[{"authorName":"麻海燕","id":"b52ea54d-8b78-4b2e-a9a8-0498e50c49b6","originalAuthorName":"麻海燕"},{"authorName":"余红发","id":"87c192ac-2a9e-488f-bc0e-1061f62eec20","originalAuthorName":"余红发"},{"authorName":"白康","id":"76d443ad-a903-4a6b-a250-8abcfcdf024d","originalAuthorName":"白康"},{"authorName":"曹文涛","id":"a00464ab-8ba0-4710-b11b-25eafdd02532","originalAuthorName":"曹文涛"},{"authorName":"周鹏","id":"e7a998b9-cf44-4f20-bfb7-401e289d7a23","originalAuthorName":"周鹏"},{"authorName":"韩丽娟","id":"c5e67934-187d-49cd-8561-c00f494a3491","originalAuthorName":"韩丽娟"}],"doi":"","fpage":"860","id":"ddccbe79-4fa8-430d-8f9e-47332095778d","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"fcc76407-b0a8-46cc-986e-7e6a01cab801","keyword":"高性能混凝土","originalKeyword":"高性能混凝土"},{"id":"8bd5e8ef-2be0-4972-b27c-e20b4d1dbc67","keyword":"机场道面除冰液","originalKeyword":"机场道面除冰液"},{"id":"1805cb13-8582-44fb-be35-237ba8453077","keyword":"抗冻性","originalKeyword":"抗冻性"},{"id":"16f98cb5-7c4b-4380-bcc2-7f4f5864b5a2","keyword":"动弹性模量","originalKeyword":"动弹性模量"},{"id":"b94797a4-ef3c-4606-a6c0-00050819dc65","keyword":"冻融循环","originalKeyword":"冻融循环"}],"language":"zh","publisherId":"gsytb201104023","title":"机场道面除冰液对高性能 混凝土抗冻性的影响","volume":"30","year":"2011"},{"abstractinfo":"本文针对我国冬季水泥混凝土路面常年遭受冰雪灾害,使用除冰盐对路面造成侵蚀损害现象,分析了盐冻对混凝土的破坏原理,通过试验比较两种不同除冰盐NaCl、CaCl2在冻融环境下对混凝土质量损失和相对动弹性模量等耐久性因素的影响,得出混凝土在除冰盐NaCl、CaCl2在冻融环境下,随冻融次数的增加,试块表面剥浊腐蚀严重,动弹性模量逐渐下降,力学性能变差,抗压强度降低;两种除冰盐在各自不同浓度3%、6%、12%、25%冻融环境下,3%盐冻的试块破坏最为严重,试块表面剥落露骨,相对动弹性模量迅速降低.","authors":[{"authorName":"曹瑞实","id":"8afccca2-782d-4e09-9209-8c2224165d7a","originalAuthorName":"曹瑞实"},{"authorName":"田金亮","id":"08f2e663-8c98-49c6-ad60-3f9831d930a3","originalAuthorName":"田金亮"}],"doi":"","fpage":"2632","id":"3a261c95-ed18-44c6-8f35-69c37da133cc","issue":"12","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"414ac9f4-88b2-4d2e-aa84-1d9f9c32507a","keyword":"NaCl","originalKeyword":"NaCl"},{"id":"7b431e40-3128-494c-9fcf-c5c5b63946d0","keyword":"CaCl2除冰盐","originalKeyword":"CaCl2除冰盐"},{"id":"41c867de-6334-40b4-af18-ffb426ddc33b","keyword":"质量损失率","originalKeyword":"质量损失率"},{"id":"227e03ac-de7b-4e2e-a77e-4030371536b1","keyword":"水泥混凝土路面","originalKeyword":"水泥混凝土路面"}],"language":"zh","publisherId":"gsytb201312043","title":"不同除冰盐冻融环境下对混凝土耐久性的影响","volume":"32","year":"2013"},{"abstractinfo":"为了研究除冰盐环境下聚丙烯纤维混凝土的耐久性能,采用于湿交替与盐冻循环方式模拟除冰盐环境,分析纤维混凝土的物理力学性能、质量损失、动弹模损失、氯离子含量分布及微观结构.结果表明,纤维混凝土在除冰盐环境下的抗折强度、质量及动弹模的损失率随纤维掺量增加而减少;纤维掺量为0.1%的试件内部致密,随纤维掺量继续增大,试件的抗氯离子侵蚀能力减弱;试件表面氯离子富集区随循环次数增加而向内迁移;氯离子扩散系数随干湿交替次数增加而减小,随盐冻循环次数增加而增大.","authors":[{"authorName":"王晨飞","id":"3cc53074-e55f-42e3-b0de-a3fb2182a6a9","originalAuthorName":"王晨飞"},{"authorName":"牛荻涛","id":"1cb9b2fb-0a6f-4802-b171-605b2b30218f","originalAuthorName":"牛荻涛"},{"authorName":"焦俊婷","id":"702666ff-9743-4296-bbd1-9a56e5ee1316","originalAuthorName":"焦俊婷"}],"doi":"","fpage":"3126","id":"12943eac-89ef-4c28-b7cd-5479aeaaf151","issue":"10","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"a48e3db6-8f8f-4381-aac0-cf9b2cda991f","keyword":"除冰盐环境","originalKeyword":"除冰盐环境"},{"id":"4b571b78-b538-4832-9b3d-b0ca068e97a2","keyword":"聚丙烯纤维混凝土","originalKeyword":"聚丙烯纤维混凝土"},{"id":"c181ae20-b106-4e10-a530-882057bf622a","keyword":"耐久性能","originalKeyword":"耐久性能"},{"id":"8435df9a-7f7e-4c16-af2b-4b2598367ff5","keyword":"氯离子","originalKeyword":"氯离子"},{"id":"ee889774-6d28-4094-9aa1-c1bc12153453","keyword":"扩散系数","originalKeyword":"扩散系数"}],"language":"zh","publisherId":"gsytb201610007","title":"除冰盐环境下纤维混凝土的耐久性研究","volume":"35","year":"2016"},{"abstractinfo":"采用全浸泡腐蚀试验方法和电化学测试研究了飞机常用镀镉钢在机场道面除冰液中的腐蚀行为.采用能谱和红外光谱分析了腐蚀产物的构成.结果表明:在机场道面除冰液中,随着温度的升高,镀镉钢试件的腐蚀速率逐渐增大,镀镉钢的腐蚀不是纯扩散控制的电化学反应,阳极的电化学反应与镀镉层的腐蚀溶解有关;经过铬酸盐钝化后的镀镉钢和镀镉钛钢在机场道面除冰液中的腐蚀可能存在多个氧化还原反应,铬酸盐钝化产物也参与了电化学反应,腐蚀反应比较复杂;腐蚀产物中含有碳酸盐和磷酸盐;镀镉钢表面上的碳酸盐可能来自机场道面除冰液有机盐的分解,磷酸盐可能来自机场道面除冰液中的缓蚀剂或pH缓冲剂.","authors":[{"authorName":"张亚博","id":"95abeb7e-388e-4209-9208-237fdc217eca","originalAuthorName":"张亚博"},{"authorName":"彭华乔","id":"70594a20-e739-473a-98e8-5774c0799a95","originalAuthorName":"彭华乔"},{"authorName":"苏正良","id":"d44aa669-5976-43c3-9505-5d4db9e857ab","originalAuthorName":"苏正良"},{"authorName":"王强","id":"01a122db-b087-48e6-be90-821605013b14","originalAuthorName":"王强"},{"authorName":"林修洲","id":"41ac6960-c5aa-4574-beb9-2da92a0b0a22","originalAuthorName":"林修洲"},{"authorName":"张帆","id":"9d6b65df-cfb2-4d0d-8a29-7d0de6766f73","originalAuthorName":"张帆"}],"doi":"10.11973/fsyfh-201611001","fpage":"865","id":"f2cca4dc-df3a-4830-80f9-b4e20589a8e9","issue":"11","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"6a4cce24-164d-445b-951e-65f06621dac6","keyword":"机场道面除冰液","originalKeyword":"机场道面除冰液"},{"id":"ede85ed0-167b-42cd-8b7f-25feea1370b2","keyword":"镀镉钢","originalKeyword":"镀镉钢"},{"id":"749898aa-66e7-4d67-a3be-e8ba1f82dbb1","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"38047cca-f601-4ef8-8056-53ce422e1c9a","keyword":"腐蚀机理","originalKeyword":"腐蚀机理"},{"id":"4004b581-532c-4593-a22e-a7a5608e1910","keyword":"全浸泡腐蚀测试","originalKeyword":"全浸泡腐蚀测试"},{"id":"e8b441e4-c9f4-4184-800f-a5092aa19579","keyword":"循环腐蚀测试","originalKeyword":"循环腐蚀测试"}],"language":"zh","publisherId":"fsyfh201611001","title":"飞机常用镀镉钢在机场道面除冰液中的腐蚀行为","volume":"37","year":"2016"},{"abstractinfo":"目前,对镀镉层在机场道面除水剂中腐蚀行为及机理的研究不多.采用全浸泡腐蚀和循环腐蚀试验方法模拟飞机高强度镀镉钢在接触到机场道面除冰剂后的腐蚀行为,研究了镉镀层在机场道面除冰剂中的腐蚀行为及腐蚀机理.镀镉钢浸泡在AMS 1435机场道面除冰剂中时,初始阶段腐蚀速率很大,随着浸泡时间的增长腐蚀速率逐渐变小,而浸泡在甲酸钠和乙酸钾溶液中时则反之;镀镉钢在同一种机场道面除冰剂中,循环腐蚀时比全浸泡腐蚀时的腐蚀速率大,可能是循环腐蚀测试中镀镉钢浸湿后暴露在空气中导致溶液氧浓度增大引起的.通过对腐蚀产物的能谱分析,试片上残留的腐蚀产物为镉的碳酸盐和少量的磷酸盐,碳酸盐的形成来自机场道面除冰剂中有机酸盐的分解,磷酸盐可能来自机场道面除冰剂中的pH值缓冲剂.镀镉钢在机场道面除冰剂中的腐蚀首先是以镉镀层溶解形成Cd2+开始,然后是机场道面除冰剂分解形成碳酸根,最后形成CdCO3附着在镉镀层上.通过对飞机镀镉高强度钢腐蚀机理的研究,可为飞机镀镉钢的防腐蚀和机场道面除冰剂的研发提供理论支持.","authors":[{"authorName":"张亚博","id":"085e8efd-5120-43eb-b747-78d1f31af36a","originalAuthorName":"张亚博"},{"authorName":"彭华乔","id":"e470d92c-e160-4d72-9254-ba82f2703748","originalAuthorName":"彭华乔"},{"authorName":"苏正良","id":"6ee41ecb-1573-4b41-9243-4cccb3644115","originalAuthorName":"苏正良"},{"authorName":"王强","id":"27e8dbbd-b76b-496a-9157-0cc1a2dd63ac","originalAuthorName":"王强"},{"authorName":"张帆","id":"4e5a434d-ec5c-4c98-8efb-0cf6a0fe86e0","originalAuthorName":"张帆"},{"authorName":"林修洲","id":"b3335603-2caa-4eaa-aae9-08387e246891","originalAuthorName":"林修洲"}],"doi":"","fpage":"75","id":"e79198f5-69b7-47d5-b421-651c8a89f0ea","issue":"7","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"35201a1f-d507-4429-a627-9a6ebe6e374f","keyword":"镀镉高强度钢","originalKeyword":"镀镉高强度钢"},{"id":"ff86a80d-ed80-4553-b1d9-d08d6db9787e","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"14c1ef70-0d9b-4fd8-9857-6458a931a07f","keyword":"腐蚀机理","originalKeyword":"腐蚀机理"},{"id":"b263fc72-2428-4d64-a669-72bf8c47b41a","keyword":"机场道面除冰剂","originalKeyword":"机场道面除冰剂"},{"id":"f1d6841d-e541-4123-8fa2-ec83f868d2b5","keyword":"浸泡腐蚀测试","originalKeyword":"浸泡腐蚀测试"},{"id":"ec71c30e-ee26-490c-b794-a70fde56abfd","keyword":"循环腐蚀测试","originalKeyword":"循环腐蚀测试"}],"language":"zh","publisherId":"clbh201607019","title":"飞机镀镉高强度钢在机场道面除冰剂中的腐蚀行为及机理","volume":"49","year":"2016"},{"abstractinfo":"模拟风电叶片蒙皮铺层结构,采用真空辅助灌注成型工艺制备了含高分子电热膜的夹层结构玻璃钢样板,研究了在不同环境温度和功率密度下的通电加热效果,通过实验数据拟合出了灌注后的高分子电热膜具备防除冰能力所需的最小功率密度与所处环境温度的关系式,并研究了低温环境中不同功率密度下的除冰性能.结果表明,在-11~-13℃环境中且表面覆冰厚度为1 cm的情况下,在200~600W/m2功率密度范围内的除冰时间可控制在1-3h.","authors":[{"authorName":"牟书香","id":"2e961691-d51b-40e1-8310-a9acdf2f40ce","originalAuthorName":"牟书香"},{"authorName":"吴芮","id":"d8fe7c16-a3fb-4e4c-b11c-4b58bcf88764","originalAuthorName":"吴芮"},{"authorName":"陈淳","id":"8a36b617-8370-496b-8b69-fc5516ea83c8","originalAuthorName":"陈淳"},{"authorName":"闫少轶","id":"b091cbc6-28c9-46c7-95e9-6e97015021b0","originalAuthorName":"闫少轶"}],"doi":"","fpage":"57","id":"95521231-e4c5-4e79-a1d7-7a33856516a0","issue":"6","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"07023eba-316a-486d-8a95-c9b71e0fc378","keyword":"风电叶片","originalKeyword":"风电叶片"},{"id":"1543a76d-df36-4988-8aca-55475f113861","keyword":"玻璃钢","originalKeyword":"玻璃钢"},{"id":"f5176628-2ad8-45f8-ab6f-c44c21ae2b26","keyword":"防结冰","originalKeyword":"防结冰"},{"id":"41c61591-5232-4c43-b3fc-43b165c22ea6","keyword":"除冰","originalKeyword":"除冰"},{"id":"4246057d-9fa9-4c0f-93e3-64cf82cbe2a0","keyword":"高分子电热膜","originalKeyword":"高分子电热膜"}],"language":"zh","publisherId":"blgfhcl201406012","title":"基于高分子电热膜的风电叶片复合材料试验件电热除冰性能研究","volume":"","year":"2014"},{"abstractinfo":"以融冰界面位移与相变传热理论为基础,考虑了玻璃纤维增强树脂复合材料层和冰层的升温蓄热、界面冰层融化相变潜热以及冰层与周围空气的对流传质、对流换热和辐射换热等影响,提出了一种基于高分子电热膜的电热除冰功率密度计算的数学模型.对特定除冰模型进行了功率密度的计算,并通过模拟特定环境下的实际除冰实验对计算结果的准确性进行了验证,计算结果与实验结果吻合较好.","authors":[{"authorName":"倪爱清","id":"6ce48c1a-5288-471e-b508-b09326e19db6","originalAuthorName":"倪爱清"},{"authorName":"王延明","id":"aa522825-88e5-4b6f-b5c5-e607435bc01a","originalAuthorName":"王延明"},{"authorName":"王继辉","id":"c44a1e4d-4df3-4e35-9973-e5382c0eb44c","originalAuthorName":"王继辉"},{"authorName":"牟书香","id":"e049de5d-1a9b-4f6a-ba3e-ee702fe09d7e","originalAuthorName":"牟书香"},{"authorName":"高国强","id":"a455d0d8-17d8-4d30-aba3-0df38db65f63","originalAuthorName":"高国强"}],"doi":"","fpage":"17","id":"fce65fe3-6cb6-440b-97ed-dc562c54b2f8","issue":"9","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"adef721b-bcf8-4005-92dd-ca983c9805a1","keyword":"高分子电热膜","originalKeyword":"高分子电热膜"},{"id":"b7415cc9-b6c3-4bca-a975-293774140964","keyword":"电热除冰","originalKeyword":"电热除冰"},{"id":"a826aee6-0d63-4663-9b6f-25c59920eb98","keyword":"功率密度","originalKeyword":"功率密度"},{"id":"8b515564-e469-44cf-830c-8fd981777d7b","keyword":"数学模型","originalKeyword":"数学模型"}],"language":"zh","publisherId":"blgfhcl201509003","title":"基于高分子电热膜的风电叶片电热除冰功率密度计算模型","volume":"","year":"2015"},{"abstractinfo":"搭建了薄液膜腐蚀试验装置,使用膨体聚四氟乙烯(E-PTFE)防水透气膜准确控制了薄液膜厚度.利用电化学方法研究了质量分数为5%的醋酸钾型除冰液薄液膜厚度对飞机用4130基材钢腐蚀行为的影响.结果表明:该体系腐蚀过程主要受阴极氧扩散控制,薄液膜下腐蚀产物的溶解与扩散过程对腐蚀速率有较大影响;不同液膜厚度下腐蚀体系的阻抗谱均只有一个时间常数,且溶液电阻随液膜厚度增大而减小.当液膜厚度很薄(30 μm左右)时,腐蚀速率很低;随液膜变厚,腐蚀速率先缓慢升高,然后迅速上升;在液膜厚度200μm左右达到极值,然后快速下降;当膜厚进一步增大,接近全浸状态,腐蚀速率又逐渐升高,并趋于稳定.","authors":[{"authorName":"杨丽","id":"bb7a9518-9ae0-4548-90bc-4e79f1e12468","originalAuthorName":"杨丽"},{"authorName":"林修洲","id":"46eb0c41-84e4-414b-bd27-8d190c22f798","originalAuthorName":"林修洲"},{"authorName":"梅拥军","id":"7f160a29-31c5-430d-a0ef-eeb24e7c6fb3","originalAuthorName":"梅拥军"},{"authorName":"李月","id":"e758c316-0e3d-491a-979e-783dc1587341","originalAuthorName":"李月"},{"authorName":"杜勇","id":"9b08563d-2cc4-4f0a-be09-2d10ccfdb5b6","originalAuthorName":"杜勇"},{"authorName":"郑兴文","id":"4d786cd0-2f9d-46a1-a75f-420a19343b1d","originalAuthorName":"郑兴文"},{"authorName":"罗淑文","id":"a4ff7463-10b5-4fd1-a707-a80385ba298b","originalAuthorName":"罗淑文"}],"doi":"10.11973/fsyfh-201604017","fpage":"350","id":"d1196966-7320-4bde-8089-e23dbc4b0baf","issue":"4","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"379c4d97-4a19-4a48-bf37-07fdf39ed2ac","keyword":"4130钢","originalKeyword":"4130钢"},{"id":"cc839a16-fee2-4a9c-98b2-9ac7ca00c3ec","keyword":"醋酸钾型除冰液","originalKeyword":"醋酸钾型除冰液"},{"id":"c43dde41-f718-4a80-adf4-9e7ee090434f","keyword":"电解液膜","originalKeyword":"电解液膜"},{"id":"90ceac9a-113e-4a13-8db0-449a28940d28","keyword":"电化学测试","originalKeyword":"电化学测试"}],"language":"zh","publisherId":"fsyfh201604017","title":"醋酸钾型除冰液薄液膜厚度对飞机用4130钢腐蚀行为的影响","volume":"37","year":"2016"}],"totalpage":3296,"totalrecord":32952}