贵金属, 2012, 33(z1): 88-95.
IZATT Steven R. 1, , BRUENING Ronald L. 2, , IZATT Neil E. 3,
1.IBC Advanced Technologies,{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文开发了一种基于边界保角变换技术的有限元方法来研究熔体法石榴石晶体生长过程中界面动力学的影响.建立了一个可导致界面上小面形成的动力学模型,该模型可处理界面上粗糙面区域和光滑面区域共存的复杂情况.模型中小面区域的动力学系数与界面上的过冷度及取向角均有关.计算结果显示了小面的形成和界面上各向异性的过冷度分布.","authors":[{"authorName":"刘永才","id":"d12f2703-1098-403f-89a1-b45486e587a2","originalAuthorName":"刘永才"},{"authorName":"","id":"67ac3dde-cd7a-43c5-b13d-ba4af4ad7933","originalAuthorName":""}],"doi":"10.3969/j.issn.1000-985X.1999.01.002","fpage":"8","id":"110f4a24-06e7-4d5a-9344-a073d41a3dfc","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"c8287b87-8c4b-4cf3-987e-f45e0a916aa6","keyword":"界面动力学模型","originalKeyword":"界面动力学模型"},{"id":"b9d030b7-a5c9-4b57-be5a-71f0abb07cc0","keyword":"有限元方法","originalKeyword":"有限元方法"},{"id":"5d40f44d-0c3f-470e-a68f-d70783f83e1e","keyword":"小面化","originalKeyword":"小面化"},{"id":"dfb27b16-3740-47c2-99a9-8469fafd0690","keyword":"熔体生长","originalKeyword":"熔体生长"},{"id":"1a6071ab-843b-47b6-96e7-c396a6616b00","keyword":"石榴石晶体","originalKeyword":"石榴石晶体"}],"language":"zh","publisherId":"rgjtxb98199901002","title":"石榴石晶体生长过程的生长动力学模型","volume":"","year":"1999"},{"abstractinfo":"根据喇曼光谱、红外光谱测试了晶体生长的水溶液、溶剂和熔体的结构,并且在水热条件下进行了外加直流电场的实验,证实了晶体生长基元为负离子配位多面体,在不同的温度和溶液浓度条件下,负离子配位多面体相互联结成不同结构形式和不同维度的生长基元(聚集体),不同维度的生长基元往晶体各个面族上的叠合速率是各不相同的,表现在同一种晶体在不同的生长条件下,其结晶形态可以各不相同,由此进一步阐述了负离子配位多面体生长基元理论模型的合理性.","authors":[{"authorName":"仲维卓","id":"67be4860-1d75-4941-aa20-c677d9ee2f03","originalAuthorName":"仲维卓"},{"authorName":"郑燕青","id":"2abb6a3b-324e-4eb2-b9dc-92c9d991d0e8","originalAuthorName":"郑燕青"},{"authorName":"施尔畏","id":"85d918b7-985a-4c28-adad-34563ada6166","originalAuthorName":"施尔畏"},{"authorName":"华素坤","id":"8377b497-8cee-4bfb-8323-18bba88d8c9e","originalAuthorName":"华素坤"}],"doi":"10.3969/j.issn.1000-985X.2002.05.001","fpage":"425","id":"cdd4609b-2a22-486c-8dc5-a996f61ed9ef","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"dc645cd4-b857-489b-9aa5-cf0893af12c6","keyword":"喇曼光谱","originalKeyword":"喇曼光谱"},{"id":"e218164a-bc44-43fe-830e-0457cd5e3866","keyword":"溶液","originalKeyword":"溶液"},{"id":"f34ae78f-7e3f-4584-b075-908bc259764c","keyword":"熔体结构","originalKeyword":"熔体结构"},{"id":"b07959cf-ead8-4f35-a742-d55589015aea","keyword":"负离子配位多面体生长基元","originalKeyword":"负离子配位多面体生长基元"},{"id":"a8415761-62ec-477b-b23d-24e8283bd3c6","keyword":"晶体生长习性","originalKeyword":"晶体生长习性"}],"language":"zh","publisherId":"rgjtxb98200205001","title":"晶体生长溶液、熔体结构与生长基元","volume":"31","year":"2002"},{"abstractinfo":"在1500℃、1600℃、1650℃和1750℃氩气中保温3 h,使Fe-Si在石墨基板上熔化并敷展,分别在熔层表面获得SiC颗粒层、SiC颗粒与晶须混合层、SiC晶须层和SiC腾空薄膜.XRD分析确定所有产物均为3C-SiC;TEM和SAED分析表明,SiC晶须为3C-SiC单晶,生长方向为[111].基于上述结果,提出不同温度下C与熔体中的Si经不同反应路径,生成不同形貌SiC的反应机理:低温时(≤1500℃),Fe提高了熔体中C的饱和溶解度,以液-固(LS)反应生成SiC颗粒;较高温度时(1500~1750 ℃),借助Fe的催化作用,以气-液-固(VLS)机理生成SiC晶须;更高温度时(≥1750℃),气-液-固(VLS)变得无序,生成SiC腾空连续膜.","authors":[{"authorName":"翟蕊","id":"41b41e9c-852b-427d-b091-1d05a0ccf3b0","originalAuthorName":"翟蕊"},{"authorName":"杨光义","id":"58657ad8-3400-4e20-844b-5c747a39ea16","originalAuthorName":"杨光义"},{"authorName":"吴仁兵","id":"51fd0d13-2e6d-4684-ab56-467cd09d2ed0","originalAuthorName":"吴仁兵"},{"authorName":"陈建军","id":"fae1001c-2a4b-4ab1-847e-d5fd164e6ae7","originalAuthorName":"陈建军"},{"authorName":"林晶","id":"8f7418f8-a340-44cb-bb2a-fad77597109c","originalAuthorName":"林晶"},{"authorName":"吴玲玲","id":"f8c255b9-8f43-497d-949c-bbcb67448ae3","originalAuthorName":"吴玲玲"},{"authorName":"潘颐","id":"abf40b2e-012d-46ae-9a39-4cacfa7bddb2","originalAuthorName":"潘颐"}],"doi":"10.3321/j.issn:1000-3851.2007.05.018","fpage":"97","id":"fedfffd0-4033-4e54-99fb-46d4bbc74d86","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"bfe9d78d-e650-4830-9040-8b6b341adf97","keyword":"SiC晶须","originalKeyword":"SiC晶须"},{"id":"46d47eca-e4e4-4741-b0d6-37dffa3a0240","keyword":"液相法","originalKeyword":"液相法"},{"id":"8511d55a-22ca-43db-b276-da75433b1a19","keyword":"VLS生长机理","originalKeyword":"VLS生长机理"}],"language":"zh","publisherId":"fhclxb200705018","title":"FeSi熔体中SiC晶须的VLS生长","volume":"24","year":"2007"},{"abstractinfo":"根据对晶体生长溶液、熔体拉曼光谱的测试结果,剖析了溶液和熔体中负离子配位多面体的分布及其缔合过程,总结出了不同过饱和溶液和不同过冷度熔体中负离子配位多面体生长基元的缔合形式和维度的规律.在靠近晶体的边界层处已出现与晶体结构相同或相似的大维度生长基元.实验表明,生长基元的分布和缔合与溶液过饱和度和熔体过冷度密切相关,从而提出用拉曼光谱进行实时监控,寻找最佳生长物化条件,优化晶体生长边界层的厚度和大维度生长基元的数量,为选择最佳工艺条件提出理论依据.","authors":[{"authorName":"仲维卓","id":"05c85d04-0cae-4ee7-895b-cb49d1318756","originalAuthorName":"仲维卓"},{"authorName":"张学华","id":"42e3886f-2222-4671-90a2-d058010bae97","originalAuthorName":"张学华"},{"authorName":"罗豪甦","id":"557af783-713a-46f7-82f3-1021c58cb855","originalAuthorName":"罗豪甦"},{"authorName":"华素坤","id":"866dd736-8afe-4bee-a6d0-356ff381d4b0","originalAuthorName":"华素坤"}],"doi":"10.3969/j.issn.1000-985X.2005.02.001","fpage":"195","id":"d46802fd-7326-4452-9c60-2b799b4c9395","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"924fe02e-1f5d-4908-86e3-24116fbc6313","keyword":"溶液/熔体","originalKeyword":"溶液/熔体"},{"id":"f2a60b9c-e5c2-4aea-b9d6-1d69d6c46ba1","keyword":"拉曼光谱","originalKeyword":"拉曼光谱"},{"id":"176105d9-4aa0-4444-a257-2be4a2d1b6b2","keyword":"负离子配位多面体生长基元","originalKeyword":"负离子配位多面体生长基元"},{"id":"b7bbf8e4-6ad7-4c55-94e5-1a8649f60caa","keyword":"生长基元缔合","originalKeyword":"生长基元缔合"},{"id":"34f700c2-488d-4fc3-b147-a5f5e9230c49","keyword":"边界层","originalKeyword":"边界层"}],"language":"zh","publisherId":"rgjtxb98200502001","title":"溶液、熔体中负离子配位多面体生长基元的分布与缔合","volume":"34","year":"2005"},{"abstractinfo":"考虑浮力、热毛细力、离心力和科里奥利力的情况下, 对CZ法砷化镓单晶生长中熔体流动和传热建立了三维时相关紊流数学模型. 通过数值求解预测到了熔体中流动状态的转变. 结果表明, 熔体中温度梯度驱动的浮力与热毛细力的联合作用和晶体旋转产生的离心力与科里奥利力的联合作用相匹配时, 熔体流动为非轴对称流动; 当其中一方占优势时, 熔体流动为轴对称流动. 流动为非轴对称流动时, 熔体中出现斜压热流体波. 由轴对称流动转变为非轴对称流动的机制为斜压不稳定性. 得到了能描述不同条件下熔体流动状态的流动区域图. 数值结果对优质砷化镓单晶生长具有重要的参考价值.","authors":[{"authorName":"陈淑仙","id":"610fc1f3-d236-4aff-bba8-ca4e43266b64","originalAuthorName":"陈淑仙"},{"authorName":"李明伟","id":"243713e6-0d7b-4541-8b59-0ec1ef6078ea","originalAuthorName":"李明伟"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2007.00015","fpage":"15","id":"51a0ffc9-f351-4468-9407-e0133e82d5b9","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"53549f2d-cb1b-4535-ab28-933fb86fef82","keyword":"Czochralski法","originalKeyword":"Czochralski法"},{"id":"38b80503-c2f8-4567-83d8-684af9655693","keyword":" GaAs melt","originalKeyword":" GaAs melt"},{"id":"886c941c-3e9e-41b5-8131-ac81a2777942","keyword":" flow transition","originalKeyword":" flow transition"},{"id":"814afebc-381d-4f22-837b-22a69e922a8d","keyword":" baroclinic instability","originalKeyword":" baroclinic instability"}],"language":"zh","publisherId":"1000-324X_2007_1_5","title":"CZ法砷化镓单晶生长中熔体流动状态转换","volume":"22","year":"2007"},{"abstractinfo":"考虑浮力、热毛细力、离心力和科里奥利力的情况下,对CZ法砷化镓单晶生长中熔体流动和传热建立了三维时相关紊流数学模型.通过数值求解预测到了熔体中流动状态的转变.结果表明,熔体中温度梯度驱动的浮力与热毛细力的联合作用和晶体旋转产生的离心力与科里奥利力的联合作用相匹配时,熔体流动为非轴对称流动;当其中一方占优势时,熔体流动为轴对称流动.流动为非轴对称流动时,熔体中出现斜压热流体波.由轴对称流动转变为非轴对称流动的机制为斜压不稳定性.得到了能描述不同条件下熔体流动状态的流动区域图.数值结果对优质砷化镓单晶生长具有重要的参考价值.","authors":[{"authorName":"陈淑仙","id":"50fa646e-6d33-4806-9ea5-923623ae2000","originalAuthorName":"陈淑仙"},{"authorName":"李明伟","id":"f5e1d55e-0151-4bc2-a49d-3846215d8b80","originalAuthorName":"李明伟"}],"doi":"10.3321/j.issn:1000-324X.2007.01.003","fpage":"15","id":"c6c59aca-2fd3-456d-9b7f-bbe753483a25","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"40dfc325-58b4-4100-ab26-229a1b94409c","keyword":"Czochralski法","originalKeyword":"Czochralski法"},{"id":"966e1bf9-580f-4f53-9ad1-cff7b32a1380","keyword":"砷化镓熔体","originalKeyword":"砷化镓熔体"},{"id":"ef25ff3a-27db-466d-9bb0-79aebdd8088b","keyword":"流动转换","originalKeyword":"流动转换"},{"id":"6a45feae-4f28-4ec7-b585-d47ef55cde50","keyword":"斜压不稳定性","originalKeyword":"斜压不稳定性"}],"language":"zh","publisherId":"wjclxb200701003","title":"CZ法砷化镓单晶生长中熔体流动状态转换","volume":"22","year":"2007"},{"abstractinfo":"为了控制DIMOX工艺中复合材料的生长速度和体积,采用压差法补加合金,使剩余铝合金熔体的成分得到调整并与正在氧化生长的Al2O3/Al复合材料层保持连续接触.试验研究了补加合金成分对Al-3Mg-10Si合金氧化生长的影响作用.结果表明:补加纯Al或低Mg、Si含量的铝合金,能够降低合金熔体的含镁量,缩短材料生长前沿合金熔体成分到达Al2O3-(Al,Mg)两相区的时间,促进传质过程,加速材料生长,有利于获取较大体积的复合材料.","authors":[{"authorName":"袁森","id":"6df5af67-2c4e-43af-8db7-8083c76ac93f","originalAuthorName":"袁森"},{"authorName":"王武孝","id":"a0c33c8b-1f41-4bf1-9620-cff33bbae12d","originalAuthorName":"王武孝"},{"authorName":"都业志","id":"423b9e4d-1a8f-489e-a239-1f454afb7118","originalAuthorName":"都业志"}],"doi":"10.3321/j.issn:1000-3851.2003.01.018","fpage":"96","id":"ae45d2a1-5911-460d-aaf0-0de07843776a","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"50d98b1d-6e54-42f5-ac1f-c7dfc2f4fcb7","keyword":"DIMOX工艺","originalKeyword":"DIMOX工艺"},{"id":"22554b5f-979b-403e-9e55-bd31203d7119","keyword":"Al2O3/Al复合材料","originalKeyword":"Al2O3/Al复合材料"},{"id":"a77774f9-aa62-44f2-8bde-cd11ec2801ac","keyword":"补加合金成分","originalKeyword":"补加合金成分"}],"language":"zh","publisherId":"fhclxb200301018","title":"补加合金成分对铝合金熔体直接氧化生长的影响","volume":"20","year":"2003"},{"abstractinfo":"利用静电悬浮设备成功地实现了Zr50Cu50合金熔体的深过冷与凝固,并测得了在近200 K的过冷度范围内的晶体生长速度.随过冷度的增加,初生ZrCu相的晶体生长速度几乎呈线性增大,但在整个测量的过冷度范围之内,其生长速度极低,比一般的金属、Si和Ge等的生长速度低两个数量级以上.","authors":[{"authorName":"王强","id":"5a41d046-41a1-464e-b514-2a26dd642184","originalAuthorName":"王强"},{"authorName":"马明臻","id":"11cebd0a-cc0f-4d61-98b9-8cb34636b2cd","originalAuthorName":"马明臻"},{"authorName":"张新宇","id":"22bf6893-8737-4bc1-becf-a27ce31af644","originalAuthorName":"张新宇"},{"authorName":"刘日平","id":"3f97c69c-8404-47bf-8970-25e87301f384","originalAuthorName":"刘日平"},{"authorName":"D.M.Herlach","id":"3c918655-4ad9-44c8-8c63-c69976d82e1f","originalAuthorName":"D.M.Herlach"}],"doi":"10.3321/j.issn:0412-1961.2008.12.002","fpage":"1415","id":"d54d7d88-418a-4586-a5d3-d30266c6784d","issue":"12","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"c749d55e-a201-41e4-aecb-89c8dd56b7b2","keyword":"Zr50Cu50合金","originalKeyword":"Zr50Cu50合金"},{"id":"fdcd4e1f-1019-441b-9318-d65933513598","keyword":"过冷凝固","originalKeyword":"过冷凝固"},{"id":"b9bb5eb3-5045-4694-a53a-e1c0f26fec4d","keyword":"晶体生长速度","originalKeyword":"晶体生长速度"}],"language":"zh","publisherId":"jsxb200812002","title":"Zr50Cu50合金过冷熔体中的晶体生长速度","volume":"44","year":"2008"},{"abstractinfo":"研究在用助熔剂法生长BaBiBO4晶体的过程中,熔体分层对晶体生长的影响.以Li2Mo3O10作为助熔剂,采用自发成核和顶部籽晶两种方法来生长晶体.对于这两种方法得到的晶体,用X射线粉末衍射及拉曼光谱进行了表征,结果显示,在晶体生长过程中,由于熔体分层,导致通过自发成核和顶部籽晶分别得到BaMoO4多晶和LiBaB9O15单晶两种不同的物相.","authors":[{"authorName":"韩树娟","id":"b64f0f58-d832-4793-a4fa-9af1ffe6a168","originalAuthorName":"韩树娟"},{"authorName":"王继扬","id":"17e4282e-1476-4a8a-8fa3-b53e25e15d0c","originalAuthorName":"王继扬"},{"authorName":"李静","id":"72d5ca87-6329-4695-b812-bec1574060ba","originalAuthorName":"李静"},{"authorName":"郭永解","id":"dae7a840-0cc2-4b04-bf0d-853fcd68740b","originalAuthorName":"郭永解"},{"authorName":"王永政","id":"23a9bc00-9e75-457b-9b81-751959d05feb","originalAuthorName":"王永政"},{"authorName":"赵兰玲","id":"7a087552-a572-41aa-ab2f-7c5c3cc1fe2a","originalAuthorName":"赵兰玲"}],"doi":"","fpage":"552","id":"986052a6-fed2-4228-960c-de41cd62b5b9","issue":"3","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"b46b692d-c629-41d4-9ac3-db3107cb4b8f","keyword":"晶体生长","originalKeyword":"晶体生长"},{"id":"52ddaf36-a287-4a8b-a9c1-9b7850c2d98a","keyword":"助熔剂法","originalKeyword":"助熔剂法"},{"id":"2c8c8da1-cdf1-4cc6-910c-59c6ca063818","keyword":"熔体分层","originalKeyword":"熔体分层"},{"id":"e69cbbce-e87b-410d-94c8-983cba2f1ed6","keyword":"拉曼光谱","originalKeyword":"拉曼光谱"}],"language":"zh","publisherId":"rgjtxb98201103003","title":"熔体分层对BaBiBO4晶体生长的影响","volume":"40","year":"2011"},{"abstractinfo":"工业生产的太阳能电池用多晶硅锭内部常出现碳化硅夹杂,影响太阳能电池的转换效率,特别是严重威胁硅片的切割生产过程。本文研究了硅熔体中碳化硅熔解与硅晶体中碳化硅沉淀生长特性。在熔解实验中发现:即使在碳显著过饱和的情况下,碳化硅仍会熔解在1450℃的硅熔体中,同时熔体中易形核处发生新的碳化硅颗粒析出。在1350℃下进行了硅料中碳化硅沉淀的固相生长实验,结果表明晶体硅中碳化硅沉淀的高温固态生长十分缓慢。这一特性得到理论计算证实,它表明固相生长不可能是多晶硅锭中出现大颗粒碳化硅的原因。","authors":[{"authorName":"周蔺桐","id":"cea1ffaf-7627-4a4d-abbb-c47fabf62419","originalAuthorName":"周蔺桐"},{"authorName":"章爱生","id":"83ce0e26-e5e4-498e-b385-2091f34c3954","originalAuthorName":"章爱生"},{"authorName":"尹传强","id":"9676a69b-97e1-4bbe-87cf-a960279093c5","originalAuthorName":"尹传强"},{"authorName":"刘小平","id":"14386a56-1174-4e3d-8ab6-4f75fc454bbb","originalAuthorName":"刘小平"},{"authorName":"周浪","id":"f4278ee5-a70a-43b1-9ad5-d59fb97e18e7","originalAuthorName":"周浪"}],"doi":"","fpage":"761","id":"e33bec8a-08ff-4544-b353-a262fa733bef","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"bd32d00a-0e2d-412f-839b-47e2c4fe2f4c","keyword":"硅熔体","originalKeyword":"硅熔体"},{"id":"47077d0f-99c7-4f82-a111-065fcdc7f36f","keyword":"硅晶体","originalKeyword":"硅晶体"},{"id":"e6a153b3-805f-40e9-b5f9-1f3b30113d75","keyword":"碳化硅","originalKeyword":"碳化硅"}],"language":"zh","publisherId":"clkxygc201105023","title":"硅熔体中碳化硅熔解与硅晶体中碳化硅生长","volume":"29","year":"2011"}],"totalpage":3853,"totalrecord":38521}