欢迎登录材料期刊网

材料期刊网

高级检索

采用3种中等嗜热微生物:喜温硫杆菌(Acidithiobacillus caldus,A.c)、嗜铁钩端螺旋菌(Leptospirillum ferriphilu,L.f)、嗜热氧化硫化杆菌(Sulfobacillus thermosulfidooxidans,S.t)对黄铜矿精矿进行浸出。探讨浸出过程中的微生物生长优化及搅拌反应器浸出条件优化。微生物最佳生长条件如下:生长温度为45℃、初始pH为1.5。驯化过的浸矿细菌的生长及浸出率明显高于未驯化的,驯化后浸出率在矿浆浓度为50 g/L时达到最大,为94.00%;当矿浆浓度达到100 g/L时,铜的浸出率稳定在80%左右。搅拌反应器的最优化浸出条件如下:搅拌速度350 r/min,充气强度500 mL/min。在此条件下,对黄铜矿精矿进行浸出,浸出时间为30d时,最终铜离子浓度为17.36 g/L,铜的浸出率为85.60%。

The bioleaching of chalcopyrite concentrate in the presence ofthreedifferent moderate thermophilic bacteria such asAcidithiobacillus caldus(A.c),Leptospirillum ferriphilu(L.f) andSulfobacillusthermosulfidooxidans(S.t), including the optimal conditions of microbial growth and the optimization of stirred reactor during the bioleaching process, wasinvestigated. The resultsshow that the best growth conditions of bacteria areas follows,temperature of 45℃and initial pHof1.5.The microbial growth of the domesticated bacteria and the bioleaching rate using themare significantly higher thanthose of thenon-domesticated bacteria. The leaching rate usingthedomesticated strains reaches the maximum94.00%with the pulp density of 50 g/L. The leaching rate of copper stabilizesat about 80% when the pulp density reaches100 g/L. The optimal parametersof stirred reactors areas follows:stirring speed of 350 r/minand aeration intensity of 500 mL/min. The final concentration of copper ionsis17.36 g/L and the leaching rate of copperis 85.60% for the chalcopyrite bioleachingfor 30 d under these conditions.

参考文献

[1] Li, Y.;Kawashima, N.;Li, J.;Chandra, A.P.;Gerson, A.R..A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite[J].Advances in colloid and interface science,2013:1-32.
[2] 王晓冬;段东平;周娥;陈思明.硫化铜矿强化浸出研究进展[J].中国有色冶金,2014(4):38-41.
[3] Corale L. Brierley;James A. Brierley.Progress in bioleaching: part B: applications of microbial processes by the minerals industries[J].Applied Microbiology and Biotechnology,201317(17):7543-7552.
[4] S. Panda;K. Sanjay;LB. Sukla.Insights into heap bioleaching of low grade chalcopyrite ores - A pilot scale study[J].Hydrometallurgy,2012:157-165.
[5] 曾伟民 .黄铜矿生物浸出过程中钝化膜的形成机制及其消除方法探讨[D].中南大学,2011.
[6] Craig Klauber;Andrew Parker;Wilhelm van Bronswijk.Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy[J].International Journal of Mineral Processing,20011/4(1/4):65-94.
[7] Zhao, Hongbo;Wang, Jun;Qin, Wenqing;Hu, Minghao;Zhu, Shan;Qiu, Guanzhou.Electrochemical dissolution process of chalcopyrite in the presence of mesophilic microorganisms[J].Minerals Engineering,2015:159-169.
[8] Yi Yang;Weihua Liu;Miao Chen.A copper and iron /(-edge XANES study on chalcopyrite leached by mesophiles and moderate thermophiles[J].Minerals Engineering,2013:31-35.
[9] 夏乐先;汤露;夏金兰;尹礎;柴立元;赵小娟;聂珍媛;柳建设;邱冠周.元素硫对黄铜矿生物浸出行为及群落结构的影响[J].中国有色金属学报(英文版),2012(1):192-198.
[10] Konishi Y.;Asai S.;Tokushige M.;Suzuki T..Kinetics of the bioleaching of chalcopyrite concentrate by acidophilicthermophile Acidianus brierleyi[J].Biotechnology Progress,19994(4):681-688.
[11] 刘凯;刁梦雪;杨宇;覃文庆;吴学玲.混合高温菌浸出黄铜矿及浸出过程中微生物群落的演替[J].中国有色金属学报,2010(2):346-353.
[12] Y. Rodriguez;A. Ballester;M.L. Blazquez.New information on the chalcopyrite bioleaching mechanism at low and high temperature[J].Hydrometallurgy,20031/2(1/2):47-56.
[13] ZHOU Hong-bo;LIU Xi;FU Bo;QIU Guan-zhou;HUO Qiang;ZENG Wei-min;LIU Jian-she;CHEN Xin-hua.Isolation and characterization of Acidithiobacillus caldus from several typical environments in China[J].中南工业大学学报(英文版),2007(02):163-169.
[14] Fu Bo;Zhou Hongbo;Zhang Rubing;Qiu Guanzhou.Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum[J].International Biodeterioration & Biodegradation,20082(2):109-115.
[15] Kinnunen PHM;Puhakka JA.Characterization of iron- and sulphide mineral-oxidizing moderately thermophilic acidophilic bacteria from an Indonesian auto-heating copper mine waste heap and a deep South African gold mine[J].Journal of industrial microbiology & biotechnology,20049(9):409-414.
[16] WU Chang-bin;ZENG Wei-min;ZHOU Hong-bo;FU Bo;HUANG Ju-fang;QIU Guan-zhou;WANG Dian-zuo.Bioleaching of chalcopyrite by mixed culture of moderately thermophilic microorganisms[J].中南工业大学学报(英文版),2007(04):474-478.
[17] Feng, S.;Yang, H.;Xin, Y.;Gao, K.;Yang, J.;Liu, T.;Zhang, L.;Wang, W..A novel and highly efficient system for chalcopyrite bioleaching by mixed strains of Acidithiobacillus[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2013:456-462.
[18] 朱薇;夏金兰;彭安安;聂珍媛;邱冠周.古菌生物浸出黄铜矿过程中的表观硫氧化活性表征[J].中国有色金属学报(英文版),2013(8):2383-2388.
[19] 刘漫博;孙琦;李国平;李路路;范燕.生物冶金技术应用与发展现状[J].甘肃冶金,2012(5):1-3.
[20] Qin, W.;Yang, C.;Lai, S.;Wang, J.;Liu, K.;Zhang, B..Bioleaching of chalcopyrite by moderately thermophilic microorganisms[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2013:200-208.
[21] Yuguang Wang;Lijun Su;Weimin Zeng.Effect of pulp density on planktonic and attached community dynamics during bioleaching of chalcopyrite by a moderately thermophilic microbial culture under uncontrolled conditions[J].Minerals Engineering,2014:66-72.
[22] 马鹏程;杨洪英;王路平;杨培根;刘慧.pH对黄铜矿细菌浸铜的影响[J].有色金属(冶炼部分),2015(3):1-4.
[23] 吴俊子;曾伟民;王玉光;仉丽娟;万利利;周洪波.搅拌槽反应器中中度嗜热浸矿菌预处理含砷金矿[J].过程工程学报,2013(3):494-499.
[24] M. Gericke;Y. Govender;A. Pinches.Tank bioleaching of low-grade chalcopyrite concentrates using redox control[J].Hydrometallurgy,20103/4(3/4):414-419.
[25] 张广积;方兆珩.驯化氧化亚铁硫杆菌从镍黄铁矿中浸出镍[J].过程工程学报,2001(3):285-288.
[26] S. M. Mousavi;S. Yaghmaei;M. Vossoughi.Comparison of bioleaching ability of two native mesophilic and thermophilic bacteria on copper recovery from chalcopyrite concentrate in an airlift bioreactor[J].Hydrometallurgy,20051/2(1/2):139-144.
[27] 马鹏程;杨洪英;佟琳琳;韩战旗;宋言.黄铜矿生物浸出过程中Fe(Ⅱ)和Fe(Ⅲ)的行为[J].中国有色金属学报,2013(6):1694-1700.
[28] 张卫民;谷士飞;孙占学.催化条件下低品位原生硫化铜矿的搅拌细菌浸出[J].金属矿山,2009(4):40-42,49.
[29] Zhao, Hongbo;Wang, Jun;Yang, Congren;Hu, Minghao;Gan, Xiaowen;Tao, Lang;Qin, Wenqing;Qiu, Guanzhou.Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: An emphasis on solution compositions[J].Hydrometallurgy,2015:141-150.
[30] Liang Chang-Li;Xia Jin-Lan;Yang Yi.Characterization of the thermo-reduction process of chalcopyrite at 65 °C by cyclic voltammetry and XANES spectroscopy[J].Hydrometallurgy,20111/2(1/2):13-21.
[31] F.K. Crundwell.How do bacteria interact with minerals?[J].Hydrometallurgy,20031/2(1/2):75-81.
[32] Schippers A.;Sand W..Bacterial leaching of metal sulfides proceeds by two indirect mechanismsvia thiosulfate or via polysulfides and sulfur[J].Applied and Environmental Microbiology,19991(1):319-321.
[33] Gehrke T.;Telegdi J.;Thierry D.;Sand W..Importance of extracellular polymeric substances from Thiobacillusferrooxidans for bioleaching[J].Applied and Environmental Microbiology,19987(7):2743-2747.
[34] 傅开彬;董发勤;谌书;王维清;徐龙华;王振.黄铜矿生物浸出钝化及调控研究进展[J].武汉理工大学学报,2013(6):128-133.
[35] 梁长利;夏金兰;杨益;聂珍媛;邱冠周.黄铜矿生物浸出过程的硫形态转化研究进展[J].中国有色金属学报,2012(1):265-273.
[36] 赵红波;王军;覃文庆;郑细华;陶浪;甘晓文;邱冠周.中度嗜热菌浸出黄铜矿过程表面产物解析[J].中国有色金属学报(英文版),2015(8):2725-2733.
[37] Sand W;Gehrke T.Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.[J].Research in Microbiology,20061(1):49-56.
[38] Weimin Zeng;Guanzhou Qiu;Hongbo Zhou.Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate[J].Hydrometallurgy,20103/4(3/4):177-180.
[39] 莫晓兰;林海;温建康;徐承焱.脉石矿物对细菌浸出黄铜矿的影响研究[J].稀有金属,2013(3):437-445.
[40] 余润兰;刘晶;陈安;钟代立;李乾;覃文庆;邱冠周;顾帼华.嗜酸氧化亚铁硫杆菌(ATCC 23270)浸出黄铜矿过程中的EPS、Cu2+和Fe3+的相互作用机制[J].中国有色金属学报(英文版),2013(1):231-236.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%