欢迎登录材料期刊网

材料期刊网

高级检索

The stress corrosion cracking (SCC) behavior of welded X80 pipeline steel in simulated Ku'erle soil solution was studied by means of electrochemical impedance spectroscopy (EIS) and slow strain rate tests (SSRT). The microstructure of the welded steel was observed by optical microscopy (OM). It is demonstrated that the microstructure of the weld metal consists of acicular ferrite and grain boundary ferrite, while that of heat affected zone (HAZ) is a mixture of acicular ferrite and bainitic ferrite microconstituents. The microstructure of the base steel is composed of ferrite and pearlite. The anodic dissolution of X80 pipeline steel in simulated Ku'erle soil solution could be enhanced and the SCC sensitivity increased with the increase of CO2 partial pressure. The SCC mechanism of X80 pipeline is a mixing mechanism of hydrogen embrittlement combined with anodic dissolution, and the hydrogen embrittlement plays a leading role. The higher SCC sensitivity of the weld metal was attributed to the metallurgical transformation, local hardening and residual stress.

参考文献

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65] J. Li, M. Elboujdaini, M. Gao and R.W. Revie, Mater Sci Eng A 
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%