功能材料, 2013, 44(1): 129-135.
微乳液法制备超细Co-Cr-Fe-Ni钴黑陶瓷颜料
林东恩 1, , 刘建雄 2, , 张逸伟 3, PVDF共混,使用相转化法制得无机-有机平板超滤膜.考察了SiO2含量在1%~3%(质量分数)范围内对PVDF超滤膜的接触角、膜平均孔径及渗透性能的影响.以BSA为标准污染物,通过过滤实验评价了SiO2改性后的PVDF超滤膜的抗污染行为.通过探针修饰,以原子力显微镜(AFM)检测技术定量分析了膜污染过程中膜面与污染物相互间的微观作用力.结果表明,添加SiO2能有效改善PVDF超滤膜的亲水性能,影响膜平均孔径和渗透性能.SiO2质量分数为1%的改性超滤膜(P1膜)孔径最大,接触角最小且渗透性能最佳,膜表面和断面微观结构的SEM表征结果也进一步证实了上述结论.膜污染评价结果显示,在BSA过滤过程中,P1膜通量衰减速度慢、清洗恢复率高,抗污染性能较好.AFM数据显示,膜面与BSA间的粘附力随膜的亲水性增大而下降,并随着污染物在膜表面的累积程度逐渐下降.初步说明膜与BSA间的微观作用力是导致膜污染发生的主要原因,SiO2的添加能够有效降低膜的初期污染进而提高膜抗污染性能.","authors":[{"authorName":"王欣","id":"191c476f-e66a-4e20-b890-2ee808a5325d","originalAuthorName":"王欣"},{"authorName":"王磊","id":"e23b2f97-293a-4a49-8a41-46eb64d4d803","originalAuthorName":"王磊"},{"authorName":"黄丹曦","id":"ab083c8f-3d37-4430-86f0-9f3b34860c58","originalAuthorName":"黄丹曦"},{"authorName":"孟晓荣","id":"df6a158d-9506-4872-9be3-bef4cf77aae5","originalAuthorName":"孟晓荣"},{"authorName":"陈立成","id":"e920f793-4470-4c1d-b53b-8ef351fec96f","originalAuthorName":"陈立成"},{"authorName":"王旭东","id":"a86b12b1-5c87-4eaf-9f67-285fd6a91fb7","originalAuthorName":"王旭东"}],"doi":"","fpage":"73","id":"3316c028-bf4f-41c2-9b30-fb58c5e0ba45","issue":"5","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"ea087f50-b1f0-463c-924b-16a6453456a0","keyword":"PVDF超滤膜","originalKeyword":"PVDF超滤膜"},{"id":"35157bfa-3562-4422-8c90-e258abb9580d","keyword":"纳米SiO2","originalKeyword":"纳米SiO2"},{"id":"f876cefa-9836-466e-a71d-5bc4a7223c6d","keyword":"AFM","originalKeyword":"AFM"},{"id":"7be8b10b-2d45-4f85-8e9d-a74e85d8349e","keyword":"亲水性","originalKeyword":"亲水性"},{"id":"3ff19c2d-e4f9-419d-ad59-b956efb50eda","keyword":"膜污染","originalKeyword":"膜污染"}],"language":"zh","publisherId":"mkxyjs201405014","title":"PVDF/SiO2超滤膜抗污染特性的微观作用力分析","volume":"34","year":"2014"},{"abstractinfo":"选用不同种类的溶剂以L-S相转化法制备PVDF超滤膜,讨论了不同溶剂种类对膜结构和性能的影响.研究表明,仅仅考虑以热力学参数来预测或解释得到的最终膜结构和性能都是不充分的,必须考虑成膜的动力学过程.采用的4种溶剂所制备的PVDF超滤膜的纯水通量与相互扩散系数之间有很好的关联性,其通量顺序为DMSO>NMP>DMAC>DMF,即随着溶剂与水的相互扩散系数的增大,膜的纯水通量减小;膜的SEM照片显示,对PCDF膜而言,纯水通量不仅仅取决于皮层的孔隙率,也可被认为是亚层形态的显示.同时还采用了两种复合溶剂NMP/THF,NMP/AC制备PVDF超滤膜,考察了由于溶剂与水的亲合性变化而导致的膜性能和结构的变化,结果表明,随着溶剂中丙酮和四氢呋喃的浓度增加,复合溶剂与水的亲合性降低,膜的纯水通量下降,膜变得更加致密小孔,膜的SEM照片也证明了这点.","authors":[{"authorName":"卞晓锴","id":"2a1e224b-c339-4c8d-899c-f7458828e058","originalAuthorName":"卞晓锴"},{"authorName":"施柳青","id":"5cadb82b-8dfa-4bfc-b824-14349e79b3fe","originalAuthorName":"施柳青"},{"authorName":"陆晓峰","id":"19aa88ad-a423-4b45-a874-0b2728a2331d","originalAuthorName":"陆晓峰"}],"doi":"10.3969/j.issn.1007-8924.2009.02.004","fpage":"16","id":"dc79f2bd-f7bb-4676-996d-700c2ebd747c","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"c171fb9a-f3b2-4700-aed0-ae5f35d1c068","keyword":"相转化法","originalKeyword":"相转化法"},{"id":"ba1fca8a-5966-457d-aa25-69fc26674b2a","keyword":"PVDF超滤膜","originalKeyword":"PVDF超滤膜"},{"id":"530061a6-a6e6-4bbc-baae-183065dcd3dd","keyword":"溶剂","originalKeyword":"溶剂"},{"id":"58541e57-2bfb-4b06-9cd8-52d342861312","keyword":"膜结构'性能","originalKeyword":"膜结构'性能"}],"language":"zh","publisherId":"mkxyjs200902004","title":"溶剂种类对PVDF超滤膜结构和性能的影响研究","volume":"29","year":"2009"},{"abstractinfo":"根据铸膜液粘度、凝胶点温度及相转化动力学行为,结合SEM和AFM技术及泡点压力、亲水接触角等检测手段,考察了PVDF/DMAc体系中,共混添加PVA、PMMA、PVP及其组合对相转化进程及膜结构参数和性能等的影响.结果显示,PVA和PMMA共混PVDF铸膜液的粘度和凝胶点升高,导致延迟分相并减缓了相分离及固化速度,膜内部大孔和海绵结构相互贯穿,膜亲水性较好.PVP和PMMA共混PVDF体系发生瞬时分相,液-液分相与液-固分相同时并存,膜内部大孔通透,支撑层致密,分离性能优良.PMMA能有效改善三元共混膜表面的粗糙行为.","authors":[{"authorName":"孟晓荣","id":"f3b3dfb0-92b8-4d5f-abc2-934993c4782c","originalAuthorName":"孟晓荣"},{"authorName":"张海珍","id":"295325b5-8a6b-419d-8eae-2a239adf7c72","originalAuthorName":"张海珍"},{"authorName":"黄丹曦","id":"bbc74c53-db5d-499f-9ed4-8d0f0dba91d4","originalAuthorName":"黄丹曦"},{"authorName":"赵亮","id":"af8e98c7-70ee-460c-906c-fbabe0d6124a","originalAuthorName":"赵亮"},{"authorName":"王磊","id":"192d2708-8d6b-4dfb-9ef7-e69d692b4b7e","originalAuthorName":"王磊"},{"authorName":"王旭东","id":"3d731d67-cece-4706-903f-bcffe3d11fbe","originalAuthorName":"王旭东"}],"doi":"","fpage":"660","id":"722fd8eb-3869-47fb-ae91-36642660e205","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"8c2cad3d-48f7-47af-b04e-da6503e74f4a","keyword":"PVDF超滤膜","originalKeyword":"PVDF超滤膜"},{"id":"e16e89a5-0de1-409e-a8fd-3ff9727c6f87","keyword":"共混","originalKeyword":"共混"},{"id":"3270df3d-da4a-4b17-adf2-040c1a51b320","keyword":"相转化","originalKeyword":"相转化"},{"id":"8d5d284b-0844-4f2f-b530-ca46e39b8152","keyword":"膜结构","originalKeyword":"膜结构"},{"id":"0067650a-b6b9-4765-889f-ab6a38afddb0","keyword":"膜性能","originalKeyword":"膜性能"}],"language":"zh","publisherId":"gncl201305012","title":"多元共混PVDF超滤膜的结构和性能研究","volume":"44","year":"2013"},{"abstractinfo":"通过涂覆3-羟基-L-酪氨酸(左旋多巴,L-DOPA)和再接枝氨基聚乙二醇单甲醚(Methoxypolyethylene glycol amine,MPEG-NH2)的方式对疏水聚偏氟乙烯(PVDF)膜进行表面亲水改性.在Tris缓冲溶液中,左旋多巴通过氧化反应形成聚合物,粘附在膜表面形成涂覆层,再通过氨基与聚合左旋多巴的共价结合将MPEG-NH2刷状聚合物接枝到PVDF膜表面.实验通过水接触角、傅里叶红外光谱、扫描电子显微镜等测试手段,分析和对比膜改性前后的特征和表面形貌,同时考察原膜、涂覆改性膜和接枝改性膜对乳化油的分离效率和抗污染能力.实验结果表明,左旋多巴涂覆和后续MPEG-NH2接枝改性虽然减小了PVDF膜孔径和纯水通量,但能明显提高膜表面的亲水性和过滤效率,并在乳化液分离实验中提高膜的抗污染性能和膜清洗通量恢复率.","authors":[{"authorName":"汪帅","id":"9a51f95a-977f-461c-9ed4-791e5a1b4340","originalAuthorName":"汪帅"},{"authorName":"李方","id":"4b005888-dc9d-4707-bdbe-3d69a988e111","originalAuthorName":"李方"},{"authorName":"李勇","id":"41a1d138-6268-4c61-ac39-c5e9d2b7a13e","originalAuthorName":"李勇"},{"authorName":"潘婷","id":"ce60b11e-b567-4737-b768-4fb9cb7a764e","originalAuthorName":"潘婷"},{"authorName":"杨波","id":"72a1c880-cab2-4070-aaa5-cde3b86e7a0a","originalAuthorName":"杨波"},{"authorName":"田晴","id":"0725d974-9adb-429b-97b5-8e24e9ac8dba","originalAuthorName":"田晴"}],"doi":"10.16159/j.cnki.issn1007-8924.2015.01.008","fpage":"42","id":"72577d0f-ffd7-4f5b-ab52-06060b859826","issue":"1","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"f9ab7a45-52ad-4c31-89fe-ffa64bb91b45","keyword":"左旋多巴","originalKeyword":"左旋多巴"},{"id":"c3bdc447-cdbf-4e43-821e-219dc10e5c12","keyword":"PVDF超滤膜","originalKeyword":"PVDF超滤膜"},{"id":"5798db6a-3a63-4d49-b0b8-2e33e1d8e223","keyword":"亲水性","originalKeyword":"亲水性"},{"id":"11378420-6a55-44d0-976d-4bda60c29f0d","keyword":"MPEG-NH2","originalKeyword":"MPEG-NH2"},{"id":"f9e45c79-43b6-47dc-a3db-7534e73c3417","keyword":"表面改性","originalKeyword":"表面改性"}],"language":"zh","publisherId":"mkxyjs201501008","title":"采用聚合左旋多巴涂覆及MPEG-NH2接枝对PVDF膜亲水改性的研究","volume":"35","year":"2015"},{"abstractinfo":"研究了α-Al2O3纳米颗粒质量分数在0%~5%之间时,对聚偏氟乙烯(PVDF)超滤膜的纯水通量、截留率、力学等性能带来的影响,及孔隙率和润湿角的变化,得出了α-Al2O3的最佳加入量,并利用FT-IR,SEM对α-Al2O3/PVDF杂化膜的结构进行了研究.","authors":[{"authorName":"彭跃莲","id":"790242fc-b21c-4e0c-913e-1db2d2914aaf","originalAuthorName":"彭跃莲"},{"authorName":"陈娜","id":"d23cd723-8261-4f04-befc-570731672ed6","originalAuthorName":"陈娜"},{"authorName":"沈婷","id":"fa182555-2040-497b-af61-aee3f1e95697","originalAuthorName":"沈婷"},{"authorName":"纪树兰","id":"d27eeeb8-e915-49e8-b2e3-541ef023835d","originalAuthorName":"纪树兰"},{"authorName":"王湛","id":"60c23697-5a49-4a82-818f-81a2bb884e0f","originalAuthorName":"王湛"},{"authorName":"张国俊","id":"1a182388-e822-4119-b583-ae5a90fe4d3c","originalAuthorName":"张国俊"}],"doi":"10.3969/j.issn.1007-8924.2007.04.004","fpage":"17","id":"dccf64c5-d125-4583-bef2-97406d64ca14","issue":"4","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"116d9f02-d6ce-456c-a87f-772e27666c5f","keyword":"α-Al2O3纳米颗粒","originalKeyword":"α-Al2O3纳米颗粒"},{"id":"18b98cc5-25b3-42bf-8bab-c9aeb8a6cdda","keyword":"聚偏氟乙烯","originalKeyword":"聚偏氟乙烯"},{"id":"fe359975-feed-446a-bf3d-2bd9871e4455","keyword":"有机-无机杂化膜","originalKeyword":"有机-无机杂化膜"}],"language":"zh","publisherId":"mkxyjs200704004","title":"α-Al2O3对PVDF超滤膜的结构与性能影响研究","volume":"27","year":"2007"},{"abstractinfo":"采用Co-60γ射线共辐照方法对聚偏氟乙烯(PVDF)超滤膜进行接枝丙烯酸(AAc)辐照改性,研究了在一定辐照剂量下AAc体积分数对接枝率的影响,以期达到改善其亲水性的目的.试验表明,在吸收剂量为25 KGy时,接枝率在较低浓度时随AAc体积分数的增大而线性增大,AAc体积分数大于0.40后,接枝率基本不再变化;采用表面水接触角、全反射红外光谱(ATR-IR)分析了膜的表面性质及变化,采用扫描电子显微镜(SEM)观测了膜的表面形态.结果表明,辐照改性后膜表面接触角大幅下降,且随接枝AAc体积分数升高而降低;辐照改性后PVDF超滤膜表面膜孔数量减少,纯水通量降低,截留率提高.","authors":[{"authorName":"李晓","id":"8f292288-1cde-43a0-9664-ec9e47ab8ab5","originalAuthorName":"李晓"},{"authorName":"陆晓峰","id":"bfcfcc0e-446e-45e1-b318-38967d4a4336","originalAuthorName":"陆晓峰"},{"authorName":"段伟","id":"0de1283e-8331-4638-8da6-087511d0f577","originalAuthorName":"段伟"},{"authorName":"沈飞","id":"611dd18a-e533-44e7-afb6-f125cebf9abb","originalAuthorName":"沈飞"}],"doi":"10.3969/j.issn.1007-8924.2007.02.010","fpage":"49","id":"9accfd7a-73a8-46ba-bd74-572d38061e3c","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"bb2af757-2c1d-402f-992a-47f4c94d6546","keyword":"聚偏氟乙烯","originalKeyword":"聚偏氟乙烯"},{"id":"d7c7feff-4d4c-4fa7-b71c-00ad6199d2d5","keyword":"超滤膜","originalKeyword":"超滤膜"},{"id":"6c4688e6-11be-41cf-a701-713ac02f3251","keyword":"γ射线辐照改性","originalKeyword":"γ射线辐照改性"},{"id":"1ac088b2-e5eb-4681-b7f9-04133392e68d","keyword":"接枝","originalKeyword":"接枝"},{"id":"d018d909-93e8-4a3d-9725-ed3c2826906e","keyword":"丙烯酸","originalKeyword":"丙烯酸"}],"language":"zh","publisherId":"mkxyjs200702010","title":"射线辐照接枝丙烯酸改性PVDF超滤膜","volume":"27","year":"2007"},{"abstractinfo":"通过PVDF铸膜液中添加TiO_2溶胶,采用相转化法制备了PVDF-TiO_2中空纤维共混超滤膜,并经SEM-EDX、亲水性与超滤测试、以及抗污染实验等手段研究了TiO_2溶胶对PVDF中空纤维膜的结构和亲水性能的影响.结果表明:当TiO_2含量为4.5%时,膜的亲水性能较好,抗污染性有明显的改善,在保持截留率基本不变的情况下,纯水通量明显提高,由108L/(m~2·h)提高到244 L/(m~2·h);但过高的TiO_2含量会产生严重的纳米颗粒团聚现象而造成膜的各项性能指标下降.","authors":[{"authorName":"沈红梅","id":"a1db8726-3c23-4ab1-bedd-ea560d42d6be","originalAuthorName":"沈红梅"},{"authorName":"俞丽芸","id":"24421ca1-b2c6-47c0-99ea-6ea3b22b43f7","originalAuthorName":"俞丽芸"},{"authorName":"许振良","id":"f9f88e29-3ff4-4f2a-975c-cfa744f0d5eb","originalAuthorName":"许振良"}],"doi":"10.3969/j.issn.1007-8924.2009.06.001","fpage":"1","id":"a241462e-8e77-4105-b546-08124e9a8bc7","issue":"6","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"0ab8aedf-7002-4c49-b2d5-bf319f19c040","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"2472c930-0dbc-493d-9ae5-9c0b575c6fd9","keyword":"聚偏氟乙烯","originalKeyword":"聚偏氟乙烯"},{"id":"78c50448-b8f9-40c6-a725-8b41ed4d8c67","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"16cd1012-e30f-4149-9e86-2728ab3fbf92","keyword":"亲水性","originalKeyword":"亲水性"},{"id":"f9934331-d18c-4a8a-913e-cb5f1d27315f","keyword":"抗污染","originalKeyword":"抗污染"}],"language":"zh","publisherId":"mkxyjs200906001","title":"TiO_2溶胶改性PVDF中空纤维超滤膜的亲水化研究","volume":"29","year":"2009"},{"abstractinfo":"采用聚偏氟乙烯(PVDF)中空纤维超滤膜处理饱和氯化钙溶液,研究超声处理和在线反冲洗对膜通量的影响.无反冲时,低频率和较高声强抑垢效果好,在超声频率为40 kHz、声强为2 700 W/m2,曝气量为45 L/h时,超滤90 min,抑垢率为81.3%.进行了不同反冲周期的过滤实验,反冲周期小于20 min,延缓污染效果好.反冲周期为15 min,无曝气条件下,有无超声时各超滤90 min,抑垢率分别为92.4%和83.3%.开启超声,同时曝气,在相同反冲周期下超滤相同时间,抑垢率达94.2%.明显好于单独反冲时的效果.超声抑垢联合反冲洗是一种有效控制膜污染的方法.","authors":[{"authorName":"李亚","id":"a798593d-ed93-4b0f-b958-07a7216b34ea","originalAuthorName":"李亚"},{"authorName":"吕效平","id":"d422f26c-cb3b-4800-a7c8-2f5712862ab3","originalAuthorName":"吕效平"},{"authorName":"韩萍芳","id":"63149a64-3ce5-4344-b49a-ff2660f9ca77","originalAuthorName":"韩萍芳"},{"authorName":"晋卫","id":"9099315c-db1b-4e64-b628-cf89ffbe7386","originalAuthorName":"晋卫"}],"doi":"10.3969/j.issn.1007-8924.2010.03.018","fpage":"93","id":"308e7c5e-04ca-40e9-b77a-0aac64e53ae8","issue":"3","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"3f609ad1-c6cf-4b26-8849-3b7d5c6c4214","keyword":"超滤膜","originalKeyword":"超滤膜"},{"id":"87696dd8-b3f4-48db-9585-8e861308e497","keyword":"超声","originalKeyword":"超声"},{"id":"9f39be04-b5ca-48d1-9018-ae522c36cd58","keyword":"抑垢","originalKeyword":"抑垢"},{"id":"6ce8d953-8867-4381-a9e6-980031336d21","keyword":"曝气","originalKeyword":"曝气"},{"id":"5623a64c-59e4-4ae5-97d8-e3ee4d2685a1","keyword":"反冲洗","originalKeyword":"反冲洗"}],"language":"zh","publisherId":"mkxyjs201003018","title":"超声联合反冲在线控制PVDF中空纤维超滤膜的污染","volume":"30","year":"2010"},{"abstractinfo":"通过干湿相转化法,制备聚偏氟乙烯(PVDF)/聚乙烯醉缩丁醛(PVB)共混平板超滤膜;并通过正交法,研究PVDF/PVB共混比及其在铸膜液中所占的质量分数以及大、小分子添加剂种类及其含量对膜性能的影响.结果表明,PVDF/PVB以8:2的共混比在铸膜液中占20%(质量分数,下同),5%的聚乙二醉-1500为大分子添加剂,3%的乙二醉为小分子添加剂,所制得的膜综合性能较好:接触角为58°,通量为532.2L/(m2·h),截留率为99.74%,拉伸强度为1223Pa,断裂伸长率为67.5%.","authors":[{"authorName":"李磊","id":"b83ea94a-5ca6-478d-a199-7178b5d4a002","originalAuthorName":"李磊"},{"authorName":"李强","id":"203b3113-2eb6-46d6-b100-d875d3ce128a","originalAuthorName":"李强"},{"authorName":"林汉阳","id":"1d22dea4-5717-4e53-8b57-21d52f0edf14","originalAuthorName":"林汉阳"},{"authorName":"洪昱斌","id":"986b02fb-359d-4798-b164-aeff626027cc","originalAuthorName":"洪昱斌"},{"authorName":"丁马太","id":"5c54b7a2-e29d-424a-888b-b20b88c6fbe9","originalAuthorName":"丁马太"},{"authorName":"何旭敏","id":"c98d3e20-5d81-40bf-8e5e-7f7a212a5324","originalAuthorName":"何旭敏"},{"authorName":"蓝伟光","id":"d6232a40-265e-4223-9273-a04db07ae7e7","originalAuthorName":"蓝伟光"}],"doi":"","fpage":"1100","id":"20b91e27-4fa6-4a9f-b891-ab48a9be7a92","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"1be656c4-c3c9-4743-b0bd-5b6e902146ce","keyword":"PVDF","originalKeyword":"PVDF"},{"id":"5e7ce7cf-8596-4042-9dff-dae620ec5411","keyword":"PVB","originalKeyword":"PVB"},{"id":"f19dbf2b-4fdf-4959-bc39-d2769ec5e501","keyword":"超滤膜","originalKeyword":"超滤膜"},{"id":"22d401f5-92e1-4cfd-b22e-1dc913689e43","keyword":"正交实验","originalKeyword":"正交实验"}],"language":"zh","publisherId":"gncl201106036","title":"正交法研究PVDF-PVB共混超滤膜","volume":"42","year":"2011"},{"abstractinfo":"出水有机物所造成的膜污染是限制PVDF超滤膜在城市生活污水处理中广泛应用的一个重要因素.有机物污染行为的研究对PVDF膜的改性显得尤为重要.本文利用相转化法制备不同SiO2添加量的PVDF超滤膜,研究了二级出水有机物对不同SiO2添加量改性膜的污染情兄,并用自制原子力胶体探针分析污染物与膜以及污染物和污染物之间的作用力,从微观力学层面上分析和解释了改性膜抗污染性能.","authors":[{"authorName":"付小康","id":"f6928dd1-8c17-453f-8415-ab8325a89e4d","originalAuthorName":"付小康"},{"authorName":"王磊","id":"8810911c-fd18-4be4-874e-41a7f2a2b706","originalAuthorName":"王磊"},{"authorName":"黄丹曦","id":"4cfd0cff-ad8e-4665-8dc3-8ff306f27949","originalAuthorName":"黄丹曦"},{"authorName":"王旭东","id":"52a67f7e-e17d-4b1f-9c82-5fcd329fa09e","originalAuthorName":"王旭东"},{"authorName":"孟晓荣","id":"1ab41527-adeb-47fe-b2fa-072a0dd0f7e8","originalAuthorName":"孟晓荣"},{"authorName":"吕永涛","id":"ec4baf54-193a-4d3a-ad18-8b7d37474e71","originalAuthorName":"吕永涛"},{"authorName":"张凯","id":"1e6499e7-d545-4458-aacd-68a2e867f4dc","originalAuthorName":"张凯"}],"doi":"10.16159/j.cnki.issn1007-8924.2015.05.013","fpage":"71","id":"138ed0c5-a8eb-48e2-8ca3-259587aa2bbf","issue":"5","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"78aa8459-c728-425c-9a97-4723cd0ea09b","keyword":"AFM","originalKeyword":"AFM"},{"id":"5fd6d540-88a1-415b-b211-fdcea8f29ab7","keyword":"超滤膜","originalKeyword":"超滤膜"},{"id":"a631ea1d-4781-48e6-90fb-ef9f6ea9ed82","keyword":"聚偏氟乙烯","originalKeyword":"聚偏氟乙烯"},{"id":"90c38cee-f695-44cb-b5de-1dd1aec544ce","keyword":"出水有机物","originalKeyword":"出水有机物"},{"id":"0f649e6d-f502-4761-81bb-6a969da6c0a7","keyword":"作用力曲线","originalKeyword":"作用力曲线"},{"id":"f173f67b-0025-4824-b89b-e0f9d0b053f0","keyword":"亲水改性","originalKeyword":"亲水改性"}],"language":"zh","publisherId":"mkxyjs201505013","title":"AFM在PVDF/SiO2共混超滤膜抗污染分析中的应用","volume":"35","year":"2015"}],"totalpage":128,"totalrecord":1275}