欢迎登录材料期刊网

材料期刊网

高级检索

应用基于价键理论和能带理论建立的固体与分子经验电子理论(EET)和改进的界面 TFD 理论,对Al-Mg-Si合金的β′析出相内部原子间的价电子成键及其与基体界面间形成的界面键络特征进行研究,计算该析出相的结合能、析出相与基体的界面能.计算结果表明:β′相的键络强度较pre-β″和β″相的有所减弱,因此,β′相对合金的强化作用没有β″相的显著;β′相界面处的电荷密度连续性较弱,使得界面结合较弱,相界面处内应力较大,界面结合不够稳定.本研究将合金宏观性能的研究追溯到原子成键的电子结构层次.

@@@@The atomic bonding, interface combined factor, crystal cohesive energy, interface energy between the precipitation with matrix were calculated using the empirical electronic theory in solid (EET) and the improved TFD theory which were established basis on bond theory to investigate the atomic bonding in interface between the matrix with β′ phase. The calculation results show that the atomic bonding ofβ′phase is less than that ofβ″, therefore the effect ofβ′phase strengthening for alloy is not stronger than that ofβ″. The electronic density continuous in interface between theβ′phase and matrix is poor, and also the atomic bonding in interface is weaker, and makes the inner stress larger, and the combination of interface is not stable. The research for the macro-property of alloy goes back to the electronic scale of atomic bonding.

参考文献

[1] 杨文超,汪明朴,盛晓菲,张茜,王正安.轨道交通车辆用6005A合金板材时效析出及硬化行为研究[J].金属学报,2010(12):1481-1487.
[2] Koichiro Fukui;Mahotp Endo .The Metastable Phase Responsible for Peak Hardness and Its Morphology in an Al-Mg-Si Alloy[J].Materials Science Forum,2005(Pt.1):365-368.
[3] R. Vissers;M.A. van Huis;J. Jansen;H.W. Zandbergen;C.D. Marioara;S.J. Andersen .The crystal structure of the β′ phase in Al–Mg–Si alloys[J].Acta materialia,2007(11):3815-3823.
[4] Froseth AG.;Hoier R.;Derlet PM.;Andersen SJ.;Marioara CD. .Bonding in MgSi and Al-Mg-Si compounds relevant to Al-Mg-Si alloys - art. no. 224106[J].Physical review, B. Condensed matter and materials physics,2003(22):4106-0.
[5] Andersen SJ;Marioara CD;Froseth A;Vissers R;Zandbergen HW .Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al-Mg-Si alloy system and its relation to the beta ' and beta '' phases[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):127-138.
[6] C.-S. Tsao;C.-Y. Chen;U.-S. Jeng .Precipitation kinetics and transformation of metastable phases in Al-Mg-Si alloys[J].Acta materialia,2006(17):4621-4631.
[7] Andersen SJ;Marioara CD;Vissers R;Froseth A;Zandbergen HW .The structural relation between precipitates in Al-Mg-Si alloys, the Al-matrix and diamond silicon, with emphasis on the trigonal phase U1-MgAl2Si2[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1/2):157-169.
[8] MATSUDA K;SAKAGUCHI Y;MIYATA Y .Precipitation sequence of various kinds of metastable phases in Al-Mg-Si alloy[J].Journal of Materials Science,2000,35:179-189.
[9] C. Ravi;C. Wolverton .First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates[J].Acta materialia,2004(14):4213-4227.
[10] M.A. van Huis;J.H. Chen;H.W. Zandbergen .Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al-Mg-Si alloys in the late stages of evolution[J].Acta materialia,2006(11):2945-2955.
[11] PAULING L.化学键本质[M].上海:上海科学技术出版社,1996:393-399.
[12] 张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993:1-200.
[13] 刘志林;李志林;刘伟东.界面电子结构与界面性能[M].北京:科学出版社,2002:23-150.
[14] 高英俊,李云雯,王态成,黄创高,侯贤华.Al-Mg-Si合金强化作用的键分析[J].轻金属,2005(02):55-57.
[15] 高英俊,王庆松,王娜.Al-Mg-Si合金GP区的原子键络与强化作用[J].矿冶工程,2006(05):89-91.
[16] 高英俊,陈华宁,韦娜,文春丽,黄创高.Al-Mg-Si合金中U1和U2相的原子成键与性能[J].中国有色金属学报,2010(07):1267-1274.
[17] R. Vissers;M.A. van Huis;J. Jansen;H.W. Zandbergen;C.D. Marioara;S.J. Andersen .The crystal structure of the β′ phase in Al–Mg–Si alloys[J].Acta materialia,2007(11):3815-3823.
[18] 高英俊,黄创高,莫其逢,蓝志强,刘慧,韦银燕.Al-Li合金时效初期的价键分析[J].中国有色金属学报,2005(07):1069-1074.
[19] 高英俊,文春丽,莫其逢,罗志荣,黄创高.Al-Li-Zr合金的界面原子成键与力学性能[J].中国有色金属学报,2011(09):2202-2208.
[20] 徐万东;张瑞林;余瑞璜.过渡金属化合物晶体结合能计算[J].中国科学:A辑,1988(03):323-350.
[21] 饭田修一;张质贤.物理学常用数表[M].北京:科学出版社,1979:85.
[22] HAASEN P.Physical metallurgy[M].Cambridge:Cambridge University Press,1978:1-200.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%