欢迎登录材料期刊网

材料期刊网

高级检索

在热模拟试验机上对铸态Ti40合金在950~1100℃、应变速率0.001~1.0 s-1范围内进行了热压缩实验,并基于动态材料模型理论建立了该合金的加工图,通过分析加工图和观察变形组织,研究了该合金的高温变形特性。结果表明,该合金加工图上失稳区范围为950~1040℃、0.1~1.0 s-1,功率耗散效率η值最小,为0.16~0.35,易出现局部流动现象。加工图上有两个η峰值区,范围分别为1070~1100℃、0.1~1.0 s-1和1000~1100℃、0.001~0.02 s-1,η值分别达到局部最大和整个加工图最大,分别为0.42~0.68和0.44~0.76,对应的变形特性均为动态再结晶,二者是优化的加工区。加工图上除失稳区和η峰值区以外,其它区域的η值为0.36~0.44,介于失稳区和峰值区的η值之间,是热变形时可选的区域。

Hot compression test for as-cast Ti40 alloy was carried out at 950-1100 ℃ and strain rate range of 0. 001-1.0 s-1 using a hot working simulator, and the processing maps for this alloy were plotted based on dynamic material model theory. By analyzing the processing maps and observing the deformation microstructure, the high temperature deformation characteristic of this alloy was studied. The results show that the instable zone is in the range of 950-1040 ℃ and 0. 1-1.0 s -1 with minimal value of the efficiency of power dissipation η about 0.16-0.35, and flow localization easily occurs in this zone. There are two zones with peak value of η, namely 1070- 1100 ℃ ,0. 1-1.0 s-1 and 1000-1100 ℃ ,0. 001-0.02 s-1 , in the processing maps with locally maximal value of η about 0.42-0. 68 and entirely maximal value of η about 0.44-0.76, respectively. These two zones are the optimized, and they correspond to the deformation characteristic of dynamic recrystallization. Except the zones discussed above in the processing maps, the rest zone with the η value about O. 36-0.44,which is between the values of η for the instable zone and the zone with peak value of η, may be selected for hot working.

参考文献

[1] 赵永庆.阻燃钛合金[J].稀有金属材料与工程,1996(05):1-6.
[2] 赵永庆.我国钛合金的研制与发展[J].新材料产业,2007(10):28-32.
[3] 赵永庆,周廉,邓炬.β型Ti40阻燃钛合金铸态组织高温变形的微观组织[J].机械工程材料,2000(01):14-16.
[4] 周廉,周义刚,赵永庆,曾卫东,曲恒磊,舒滢,吴欢.阻燃钛合金Ti40的热加工与力学性能研究[J].西北工业大学学报,2003(04):381-386.
[5] 张学敏,曾卫东,舒滢,赵永庆,俞汉清,周义刚.基于Zener-Hollomon因子的Ti40阻燃合金开裂准则研究[J].稀有金属材料与工程,2008(04):604-608.
[6] Prasad Y V R K;Sasidhara S (EDs).Hot Working Guide:A Compendium of Processing Maps[M].Materials Park,OH:ASM International,The Materials Information Society,1997:1-20.
[7] 厉勇,王春旭,刘宪民,田志凌,傅万堂.Fe-14Co-10Ni合金的高温塑性变形及热加工图[J].材料热处理学报,2009(06):84-88.
[8] Prasad Y V R K;Sastry D H;Deevi S C .Processing maps for hot working of a P/M iron alaminlde alloy[J].Intermetallics,2000,8(9 - 11):1067-1074.
[9] 鲁世强,李鑫,王克鲁,董显娟,李臻熙,曹春晓.用于控制材料热加工组织与性能的动态材料模型理论及其应用[J].机械工程学报,2007(08):77-85.
[10] Li X;Lu S Q;Fu M W et al.The optimal determination of forging process parameters for Ti-6,5A1-3,5Mo-1,5Zr-0,3Si alloy with thick lamellar microstructure in two phase field based on P-map[J].Journal of Materials Processing Technology,2010,210(02):370-377.
[11] Y.V.R.K. Prasad;K.P. Rao;N. Hort;K.U. Kainer .Hot working parameters and mechanisms in as-cast Mg-3Sn-1Ca alloy[J].Materials Letters,2008(26):4207-4209.
[12] 俞汉清;陈金德.金属塑性成形原理[M].北京:机械工业出版社,2009:47-48.
[13] Y. V. R. K. Prasad;T. Seshacharyulu .Modelling of hot deformation for microstructural control[J].International Materials Reviews,1998(6):243-258.
[14] J.S. Kim;J.H. Kim;Y.T. Leel;C.G. Park C.S. Lee .Microstructural analysis on boundary sliding and its accommodation mode during superplastic deformation of Ti-6A1-4V alloy[J].Materials science and engineering,1999(2):0-0.
[15] 曾卫东.Ti-17合金高温变形机理研究[J].材料工程,1996(09):27.
[16] 张学敏,赵永庆,曾卫东,蔺伟.Ti40阻燃合金粗晶超塑性变形行为及机理[J].稀有金属材料与工程,2010(03):433-436.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%