欢迎登录材料期刊网

材料期刊网

高级检索

通过对有/无缺陷单晶镍基合金蠕变性能测试、组织形貌观察及采用有限元对近孔洞区域的应力场分析,研究了组织缺陷对单晶合金蠕变行为及组织演化的影响.结果表明:组织缺陷可明显降低单晶镍基合金的塑性和蠕变寿命.在高温蠕变期间,近孔洞区域的应力等值线具有碟形分布特征,并沿与施加应力轴成45°角方向有较大值,该应力分布特征可使合金中γ'相转变成与施加应力轴成45°角的筏状结构,并使圆形孔洞沿应力轴方向伸长成椭圆状.蠕变期间,在合金圆形孔洞缺陷的上、下区域具有较小的应力值,而在圆形孔洞的两侧极点处具有最大应力值,随蠕变时间延长,应力值增大,促使裂纹在该处萌生,并沿垂直于应力轴方向扩展是降低合金蠕变寿命的主要原因.

By means of creep property test, microstructure observation and FEM analysis of the stress field near the voids, the influence of the microstructure defects on creep behavior and microstructure evolution of single crystal nickel-based superalloys was investigated. Results show that the plasticity and creep lifetime of the single crystal nickel-based superalloys are obviously decreased by microstructure defects. During high temperature creep, the stress isoline near the voids displays the feature of acetabuliform distribution, and possesses bigger values in the direction of 45° angle to the applied stress axis. That results in the γ' phase transformed into the rafted structure in the direction of 45° angle to the applied stress axis, and the circular voids defects are elongated into the ellipse in the applied stress axis direction. During creep, smaller values of the stress distribution are in the up and down regions of the circular voids, and the maximum value of the stress distribution appears in the apices region at the sides of the void. Furthermore, the fact that the value of the stres sdistribution increases as creep goes on results in the germination there and expanding vertically to the stress axis of the cracks, which is a main reason of creep lifetime decrease of the alloys.

参考文献

[1] 田素贵,杜洪强,王春涛,孟凡来,水丽,胡壮麒.W含量对单晶镍基合金组织与性能的影响[J].航空材料学报,2006(03):16-19.
[2] 田素贵,陈昌荣,杨洪才,胡壮麒.单晶Ni基合金高温蠕变期间γ'相定向粗化驱动力的有限元分析[J].金属学报,2000(05):465-471.
[3] 沙玉辉,张静华,徐永波,胡壮麒.镍基单晶高温合金定向粗化行为的取向依赖性Ⅰγ'形态的SEM观察[J].金属学报,2000(03):254-257.
[4] 田素贵;张静华;金涛 et al.[J].金属学报,1999,35(04):392.
[5] Tien J K;Copley S M .[J].Metallurgical and Materials Transactions,1971,2:215.
[6] Socrate S;Parks D M .[J].ACTA METALLURGICA ET MATERIALIA,1993,41:2185.
[7] Pollock T M;Argon A S .[J].Acta Metallurgica Et Materialia,1994,42(06):1859.
[8] Nabarro F R N;Cress C M;Kotschy P .[J].Acta Materialia,1996,44:3189.
[9] Glatzel U;Feller-Kniepmeier M .[J].Scripta Materialia,1989,23:1839.
[10] Pollock T M;Argon A S .[J].Acta Metallurgica Et Materialia,1992,40:1.
[11] 田素贵;周惠华 et al.[J].材料科学与技术,1998,14(08):751.
[12] 田素贵;周惠华;张静华 et al.[J].金属学报,1998,34(06):591.
[13] Eggeler G;Wiesner C .[J].Journal of Strain Analysis For Engineering Design,1993,28:13.
[14] 颜鸣皋.工程材料家用手册[M].北京:中国标准出版社,2001:792.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%