欢迎登录材料期刊网

材料期刊网

高级检索

采用真空熔炼法制备Fe-20Mn-3.0Cu-XC系高强度高塑性合金钢,通过X射线衍射(XRD)、光学显微镜(OM)和透射电子显微镜(TEM)观察方法研究了碳含量对该系列合金微观组织和力学性能的影响,分析了合金的拉伸变形微观机制.结果表明:Fe-20Mn-3.0Cu-XC系合金拉伸变形前后均为单相奥氏体组织,未发生马氏体相变.随着碳质量分数的增加,合金的屈服强度、抗拉强度和伸长率均显著提高.Fe-20Mn-3.0Cu-1.41C合金的屈服强度为501.62 MPa,抗拉强度为1 178.4 MPa,具有优异的综合力学性能.Fe-20Mn-3.0Cu-XC系合金具有优异的应变硬化能力.随着碳质量分数增大至1.41%,最大应变硬化指数n值达到0.782.Fe-20Mn-3.0Cu-XC系合金拉伸变形过程中,TWIP效应是主要的塑性变形机制,大量位错的塞积、形变孪晶的形成以及位错与孪晶间的交互作用共同引起材料强度和塑性的提高.

参考文献

[1] Dai Yong-juan;Tang Di;Mi Zhen-li et al.Microstructure Characteristics of an Fe-Mn-C TWIP Steel After Deformation[J].Jounral of Iron and Steel Research International,2010,17:53.
[2] Gutierrez-Urrutia I;Raabe D .Dislocation and Twin Substructure Evolution During Strain Hardening of an Fe-22% Mn-0.6% C TWIP Steel Observed by Electron Channeling Contrast Imaging[J].Acta Materialia,2011,59:6449.
[3] Koyama M;Akiyama E;Tsuzaki K .Hydrogen Embitterment in a Fe-Mn-C Ternary Twinning-Induced Plasticity Steel[J].Corrosion Science,2012,54:1.
[4] 代永娟,米振莉,唐荻,江海涛,李慎升.Fe-Mn-C系TWIP钢的组织和性能[J].上海金属,2007(05):132-136.
[5] Kim J;Lee S J;De Cooman B C .Effect of Al on the Stacking Fault Energy of Fe-18Mn-0.6C Twinning-Induced Plasticity[J].Scripta Materialia,2011,65:363.
[6] Chin, K.-G.;Kang, C.-Y.;Shin, S.Y.;Hong, S.;Lee, S.;Kim, H.S.;Kim, K.-H.;Kim, N.J. .Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(6):2922-2928.
[7] So K H;Kim J S;Chun T S et al.Hydrogen Delayed Fracture Properties and Internal Hydrogen Behavior of a Fe18Mn-1.5A1-0.6C TWIP Steel[J].ISIJ International,2009,49:1952.
[8] Kang S;Jung Y S;Jun J H et al.Effect of Recrystallization Annealing Temperature on Carbide Precipitation,Microstructure,and Mechanical Properties in Fe-18Mn-0.6C-1.5Al TWIP Steel[J].Materials Science and Engineering A,2010,527:745.
[9] 易炜发,朱定一,杨泽斌,林淑梅.铜含量对高碳TWIP钢组织和力学性能的影响[J].钢铁,2011(11):71-76.
[10] Remy L;Pineau A;Thomas B .Temperature Dependence of Stacking Fault Energy in Close-Packed Metals and Alloys[J].Materials Science and Engineering,1978,36:47.
[11] Vercammen S;Blanpain B;De Cooman B C et al.Cold Rolling Behaviour of an Austenitic Fe-30Mn-3Al-3Si TWIP-Steel:the Importance of Deformation Twinning[J].Acta Materialia,2004,52:2005.
[12] Frommeyer G;Brtüx U;Neumann P .Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purpose[J].ISIJ International,2003,43(03):438.
[13] Allain S;Chateau J P;Bouaziz O et al.Correlations between the Calculated Stacking Energy and the Plasticity Mechanisms in Fe-Mn-C Alloy[J].Materials Science and Engineering A,2004,387-389:158.
[14] Hirth J P .Thermodynamics of Stacking Faults[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1970,1:2367.
[15] Dumay A;Chateau JP;Allain S;Migot S;Bouaziz O .Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(0):184-187.
[16] Curtze S;Kuokkala V T;Oikari A et al.Thermodynamic Modeling of the Stacking Fault Energy of Austenitic Steels[J].Acta Materialia,2011,59:1068.
[17] 余永宁.金属学原理[M].北京:冶金工业出版社,2000
[18] I. KARAMAN;H. SEHITOGLU;K. GALL .DEFORMATION OF SINGLE CRYSTAL HADFIELD STEEL BY TWINNING AND SLIP[J].Acta materialia,2000(6):1345-1359.
[19] Venables J A .Deformation Twinning in Face-Centered Cubic Metals[J].Philosophical Magazine,1961,6:379.
[20] Allain S;Chateau J P;Bouaziz O et al.Proceeding of the International Conference on TRIP-Aided High Strength Ferrous Alloys[J].Ghent Belgium,2002,247:13.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%