欢迎登录材料期刊网

材料期刊网

高级检索

结合计算材料学在硫化物应力腐蚀开裂领域的最新研究进展,从硫化物应力腐蚀开裂的各个阶段入手,综述了不同阶段的理论研究,重点阐述了密度泛函方法、分子动力学在表面吸附和扩散方面的研究,多尺度模拟方法、有限元方法在裂纹尖端应力场方面的研究,并提出了该领域未来的发展方向.

参考文献

[1] Kuzyukov A N .How hydrogen effects operability of chemical and petrochemical equipment made of carbon and low alloy steel[J].International Journal of Hydrogen Energy,2002,27(08):13.
[2] Siddiqui R A .Hydrogen embrittlement in 0.31 % carbon steel used for petrochemical applications[J].Journal of Materials Processing Technology,2005,170(04):430.
[3] 麦列霍夫 P K.钢的应力腐蚀开裂[M].北京:国防工业出版社,1983:96.
[4] 李章亚.油气田腐蚀与防护技术手册[M].北京:石油工业出版社,1999:471.
[5] 朱晏萱 .N80钢H2S腐蚀行为研究[D].安达:大庆石油学院,2008.
[6] Jiang D E;Carter E A .Adsorption,diffusion,and dissociation of H2S on Fe(100) from first principles[J].Journal of Physical Chemistry B,2004,108:19140.
[7] Jiang DE;Carter EA .First principles study of H2S adsorption and dissociation on Fe(110)[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2005(1):60-68.
[8] Shih H D;Jona F;Jepsen D W et al.Metal-surface reconstruction induced by adsorbate:Fe(110)p(2× 2)-S[J].Physical Review Letters,1981,46(11):731.
[9] Dominic R. Alfonso .First-principles studies of H_2S adsorption and dissociation on metal surfaces[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2008(16):2758-2768.
[10] Dominic R Alfonso;Anthony V Cugini;Dan C Sorescu .Adsorption and decomposition of H2S on Pd(111) surface:A first-principles study[J].Catalysis Today,2005,99:315.
[11] Peng Shih Feng;Ho Jia Jen .Theoretical study of H2 S dissociation and sulfur oxidation on a W (111) surface[J].Journal of Physical Chemistry C,2010,114:19489.
[12] Briant C L;Sieradzki K .Comment on "Effect of impurity bonding on grain-boundary embrittlement"[J].Physical Review Letters,1989,63(19):2156.
[13] Michelle J. S. Spencer;Irene Yarovsky .Ab Initio Molecular Dynamics Study of H_2S Dissociation on the Fe(ll0) Surface[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2007(44):16372-16378.
[14] Zhang Z;Luo Q .First principles calculation on adsorption of S on Fe (100)[J].Advances in Materials Research,2011,337:690.
[15] 楚兴丽,路战胜,杨宗献.S在Cu(111)表面吸附的第一性原理研究[J].原子与分子物理学报,2011(03):557-562.
[16] 马淑红,焦照勇,张现周.覆盖度对S原子在Ir(001)表面吸附性质的影响[J].原子与分子物理学报,2011(05):959-962.
[17] 黄永丽 .H和S原子在金属Pd,Cu,Au及其合金(111)表面吸附的密度泛函理论研究[D].北京化工大学,2008.
[18] Huo C F;Li Y W .Surface structure energetics of hydrogen adsorption on the Fe(111) surface[J].Journal of Physical Chemistry B,2005,109:14160.
[19] Dan C.Sorescu .First principles calculations of the adsorption and diffusion of hydrogen on Fe(100) surface and in the bulk[J].Catalysis Today,2005(1):44-65.
[20] Jiang D E;Carter E A .Adsorption and diffusion energetics of hydrogen atoms on Fe(110) from first principles[J].Surface Science,2003,547:85.
[21] Zhou, YG;Zu, XT;Nie, JL;Xiao, HY .First-principles study of hydrogen adsorption on Mo(110)[J].Chemical Physics,2008(1/3):19-26.
[22] Donald F. Johnson;Emily A. Carter .Hydrogen in tungsten: Absorption, diffusion, vacancytrapping, and decohesion[J].Journal of Materials Research,2010(2):315-327.
[23] Scheider I;Pfuff M;Dietzel W .Simulation of hydrogen assisted stress corrosion cracking using the cohesive model[J].Engineering Fracture Mechanics,2008,75:4283.
[24] Wenran M R;Trethewey K R;Jarman S E .A finite-element computational model of chloride-induced transgranular stress corrosion cracking of austenitic stainless steel[J].Acta Materialia,2008,56:4125.
[25] Hiromitsu Suzuki;Keiichiro Tohgo;Yoshinobu Shimamura .Monte Carlo simulation of stress corrosion cracking on smooth surface of a sensitized stainless steel type 304 under nonuniform stress condition[J].J Solid Mech Mater Eng,2010,4(07):898.
[26] Lozano-Perez S;Yamada T;Terachi T .Multi-scale characterization of stress corrosion cracking of cold-worked stainless steels and the influence of Cr content[J].Acta Materialia,2009,57:5361.
[27] 赵丹 .核电结构材料应力腐蚀裂纹尖端应力应变分析研究[D].西安科技大学,2011.
[28] 薛晓峰 .应力腐蚀破裂裂尖微观力学场的数值模拟与分析[D].西安科技大学,2011.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%