欢迎登录材料期刊网

材料期刊网

高级检索

基于不同组分间的物理效应,例如电子耦合效应和晶格应变效应,由半导体和铂等贵金属构成的复合结构纳米材料在电催化方面具有巨大的应用前景。目前这个研究领域主要目标包括:①开发普适性的实验技术制备半导体-贵金属复合结构纳米材料,了解制备的化学原理,为材料形貌结构的精确调控奠定基础;②解析复合纳米材料中各组分间电子耦合和晶格应变效应以期能够更加深入的强化材料性能;③探索这些复合纳米材料在电催化领域的应用。本文对这一领域的研究进展进行综述并对其后续的一些发展进行预期和评估。

Composite nanomaterials composed of semiconductor and noble metals (e.g. platinum) have exhibited superior application in electrocatalysis due to the electronic coupling effect and lateral strain effect among their different components. The primary objectives in this research area include:① to develop universal strategies for the fabrication of semiconductor-noble metal nanocomposites and to understand the mechanism behind the preparation so that the structure/morphology of the nanocomposites could be tuned more precisely;② to reveal the electronic coupling effect and lateral strain effect among different components in the nanocomposites so that the performance of the materials could be further enhanced;③ to explore the applications of the nanocomposites in electrocatalysis. Herein, we will review the recent advances in this research field and make an expectation/evaluation for its future developments.

参考文献

[1] Antolini E .Formation of carbon-supported PtM alloys for low temperature fuel cells:A review[J].Materials Chemistry and Physics,2003,78(3):563-573.
[2] Liu H;Song C;Zhang L et al.A review of anode catalysis in the direct methanol fuel cell[J].Journal of Power Sources,2006,155(2):95-110.
[3] Allen R G;Lim C;Yang L X et al.Novel anode structure for the direct methanol fuel cell[J].Journal of Power Sources,2005,143(1-2):142-149.
[4] Steele B C H;Heinzel A .Materials for fuel-cell technologies[J].NATURE,2001,414(6861):345-352.
[5] M. L. Perry;T. F. Fuller .A Historical Perspective of Fuel Cell Technology in the 20th Century[J].Journal of the Electrochemical Society,2002(7):S59-S67.
[6] Jingyi Chen;Byungkwon Lim;Eric P.Lee .Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications[J].Nano Today,2009(1):81-95.
[7] E. Antolini;T. Lopes;E.R. Gonzalez .An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2008(1/2):253-262.
[8] Peng Z;Yang H .Designer platinum nanoparticles:Control of shape,composition in alloy,nanostructure and electrocatalytic property[J].NANO TODAY,2009,4(2):143-164.
[9] Chao Wang;Hideo Daimon;Taigo Onodera .A General Approach to the Size-and Shape-Controlled Synthesis of Platinum Nanoparticles and Their Catalytic Reduction of Oxygen[J].Angewandte Chemie,2008(19):3588-3591.
[10] Kang Y;Murray C B .Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals(nanocubes)[J].Journal of the American Chemical Society,2010,132(22):7568-7569.
[11] Chen A;Holt-Hindle P .Platinum-based nanostructured materials:Synthesis,properties,and applications[J].Chemical Reviews,2010,110(6):3767-3804.
[12] Carbone L;Cozzoli P D .Colloidal heterostructured nanocrystals:Synthesis and growth mechanisms[J].NANO TODAY,2010(5):449-493.
[13] 杨军;陈运法;苏发兵.贵金属基超结构纳米材料[M].北京:科学出版社,2012
[14] Sitt A;Hadar I;Banin U .Band-gap engineering,optoelectronic properties and applications of colloidal heterostructured semiconductor nanorods[J].NANO TODAY,2013,8(5):494-513.
[15] Banin U;Ben-Shahar Y;Vinokurov K .Hybrid semi-conductor-metal nanoparticles:From architecture to function[J].Chemistry of Materials,2014,26(1):97-110.
[16] Yang J;Liu H;Liu H.Metal-based composite nanomaterials[M].Springer International Publishing Switzerland,2014
[17] Mokari T;Rothenberg E;Popov I et al.Selective growth of metal tips onto semiconductor quantum rods and tetrapods[J].SCIENCE,2004,304(5678):1787-1790.
[18] Shi W L;Zeng H;Sahoo Y et al.A general approach to binary and ternary hybrid nanocrystals[J].NANO LETTERS,2006,6(4):875-881.
[19] Yang J;Levina L;Sargent EH;Kelley SO .Heterogeneous deposition of noble metals on semiconductor nanoparticles in organic or aqueous solvents[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2006(41):4025-4028.
[20] Costi R;Saunders AE;Elmalem E;Salant A;Banin U .Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells[J].Nano letters,2008(2):637-641.
[21] Yang J;Ying J Y.Room-temperature synthesis of nano-crystalline Ag2S and its nanocomposites with gold[J].Chemical Communications,2009(22):3187-3189.
[22] Jun Yang;Jackie Y. Ying .A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis[J].Nature materials,2009(8):683-689.
[23] Yang, J;Ying, JY .Diffusion of Gold from the Inner Core to the Surface of Ag2S Nanocrystals[J].Journal of the American Chemical Society,2010(7):2114-2115.
[24] Zhao N;Li L;Huang T et al.Controlled synthesis of PbS-Au nanostar-nanoparticle heterodimers and cap-like Au nanoparticles[J].Nanoscale,2010,2(11):2418-2423.
[25] Li M;Yu X-F;Liang S et al.Synthesis of Au-CdS core-shell hetero-nanorods with efficient exciton-plasmon interactions[J].Advanced Functional Materials,2011,21(10):1788-1794.
[26] Qu J;Liu H;Wei Y et al.Coalescence of Ag2S and Au nanocrystals at room temperature[J].Journal of Materials Chemistry,2011,21(32):11750-11753.
[27] Hu W;Liu H;Ye F et al.A facile solution route for the synthesis of PbSe-Au nanocomposites with different mor-phologies[J].CRYSTENGCOMM,2012,14(20):7049-7054.
[28] Haldar K K;Sinha G;Lahtinen J et al.Hybrid colloidal Au-CdSe pentapod heterostructures synthesis and their photocatalytic properties[J].ACS Applied Materials & Interfaces,2012,4(11):6266-6272.
[29] Ding X;Zou Y;Jiang J .Au-Cu2S heterodimer formation via oxidation of AuCu alloy nanoparticles and in situ formed copper thiolate[J].Journal of Materials Chemistry,2012,22(43):23169-23174.
[30] Motl N E;Bondi JF;Schaak R E .Synthesis of colloidal Au-Cu2S heterodimers via chemically triggered phase segregation of AuCu nanoparticles[J].Chemistry Materials,2012,24(9):1552-1554.
[31] Wang D;Li X;Li H et al.Semiconductor-noble metal hybrid nanomaterials with controlled structures[J].Journal of Materials Chemistry A,2013,1(5):1587-1590.
[32] Zhao Q;Ji M;Qian H et al.Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution[J].Advanced Materials,2014,26(9):1387-1392.
[33] 半导体-贵金属复合结构纳米材料的研究进展[J].储能科学与技术,2013(01):12-34.
[34] Brust M;Walker M;Bethell D.Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system[J].Journal of the Chemical Society Chemical Communications,1994(7):801-802.
[35] Brust M;Fink J;Bethell D.Synthesis and reactions of functionalised gold nanoparticles[J].Journal of the Chemical Society Chemical Communications,1995(16):1655-1656.
[36] Yang J;Lee J Y;Ying J Y .Phase transfer and its applications in nanotechnology[J].Chemical Society Reviews,2011,40(3):1672-1679.
[37] Gordana Dukovic;Maxwell G. Merkle;James H. Nelson;James H. Nelson;A. Paul Alivisatos;Steven M;Hughes;A;Paul Alivisatos .Photodeposition Of Pt On Colloidal Cds And Cdse/cds Semiconductor Nanostructures[J].Advanced Materials,2008(22):4306-4311.
[38] Einat Elmalem;Aaron E;Sounders;Ronny Costi;Asaf Salant;Uri Banin .Growth Of Photocatalytic Cdse-pt Nanorods And Nanonets[J].Advanced Materials,2008(22):4312-4317.
[39] Habas S E;Yang P D;Mokari T .Selective growth of metal and binary metal tips on CdS nanorods[J].Journal of the American Chemical Society,2008,130(11):3294-3295.
[40] Vinokurov K;Macdonald J E;Banin U .Structures and mechanisms in the growth of hybrid Ru-Cu2S nanoparticles:From cages to nanonets[J].Chemistry of Materials,2012,24(10):1822-1827.
[41] Vinokurov K;Bekenstein Y;Gutkin V et al.Rhodium growth on Cu2S nanocrystals yielding hybrid nanoscale inorganic cages and their synergistic properties[J].Cryst Eng Comm,2014,16(40):9506-9512.
[42] Harbour J R;Wolkow R;Hair M L .Effect of platinization on the photoproperties of CdS pigments in dispersion. Determination by H2 eolution, O2 uptake, and electron spin resonance spectroscopy[J].The Journal of Physical Chemistry,1981,85(26):4026-4029.
[43] Reber J F;Rusek M .Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide[J].The Journal of Physical Chemistry,1986,90(5):824-834.
[44] Frank A J;Goren Z;Willner I.Photohydrogenation of acetylene and ethylene by Pt and Rh supported on CdS semiconductor particles[J].Journal of the Chemical Society Chemical Communications,1986(15):1029-1030.
[45] Yang J;Ying J Y .Nanocomposites of Ag2S and noble metals[J].Angew Chem Int Ed,2011,50(20):4637-4643.
[46] Shukla A.K.;El-Khatib K.M.;Kim H.;Antonucci P.L.;Antonucci V.;Arico A.S. .X-ray photoelectron spectroscopic study on the effect of Ru and Sn additions to platinized carbons[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,1999(1/4):20-29.
[47] Tedsree K;Li T;Jones S et al.Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst[J].Nature Nanotechnology,2011,6(5):302-307.
[48] Alayoglu S;Nilekar A U;Mavrikakis M et al.Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen[J].Nature Materials,2008,7(4):333-338.
[49] Serpell C J;Cookson J;Ozkaya D et al.Core@shell bimetallic nanoparticle synthesis via anion coordination[J].Nature Chemistry,2011,3(6):478-483.
[50] Yang J H;Cheng C H;Zhou W et al.Methanol-tolerant heterogeneous PdCo@PdPt/C electrocatalyst for the oxygen reduction reaction[J].FUEL CELLS,2010,10(6):907-913.
[51] Yang J H;Zhou W;Cheng C H et al.Pt-decorated PdFe nanoparticles as methanol-tolerant oxygen reduction electrocatalyst[J].ACS Applied Materials & Interfaces,2010,2(1):119-126.
[52] Yang J H;Lee J Y;Zhang Q et al.Carbon-supported pseudo-core-shell Pd-Pt nanoparticles for ORR with and without methanol[J].Journal of the Electrochemical Society,2008,155(7):B776-B781.
[53] Yang J;Chen X;Ye F et al.Core-shell CdSe@Pt nanocomposites with superior electrocatalytic activity enhanced by lateral strain effect[J].Journal of Materials Chemistry,2011,21(25):9088-9094.
[54] Stamenkovi?V R;Schmidt T J;Ross P N et al.Surface composition effects in electrocatalysis:kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces[J].The Journal of Physical Chemistry(B)Materials Surfaces Interfaces & Physical,2002,106(46):11970-11979.
[55] N. M. Markovic;P. N. Ross;Jr. .Surface science studies of model fuel cell electrocatalysts[J].Surface Science Reports,2002(4/6):117-229.
[56] Stamenkovi?V R;Fowler B;Mun B S et al.Improved osygen reduction activity on Pt3Ni(111)via increased surface site availability[J].SCIENCE,2007,315(5811):493-497.
[57] Stamenkovi?V R;Mun B S;Arenz M et al.Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J].Nature Materials,2007,6(3):241-247.
[58] Ye Xu;Andrei V. Ruban;Manos Mavrikakis .Adsorption and Dissociation of O2 on Pt-Co and Pt-Fe Alloys[J].Journal of the American Chemical Society,2004(14):4717-4725.
[59] Liang H P;Zhang H M;Hu J S et al.Pt hollow nano-spheres:Facile synthesis and enhanced electrocatalysts[J].Angew Chem Int Ed,2004,43(12):1540-1543.
[60] Kim S W;Kim M;Lee W Y et al.Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalysts for Suzuki reactions[J].Journal of the American Chemical Society,2002,124(26):7642-7643.
[61] Feng Y;Liu H;Wang P et al.Enhancing the electrocatalytic property of hollow structured platinum nanoparticles for methanol oxidation through a hybrid construction[J].Scientific Reports,2014,4:6204.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%