{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":2,"startPagecode":1},"records":[{"abstractinfo":"埋地的天然气输送管道由于穿越各种类型的土壤、河流、湖泊,腐蚀成为其安全运行的最大隐患.鄂尔多斯某天然气集输管网阴极保护系统是随着气田的发展逐年建设的,采用防腐蚀涂料和强制电流阴极保护的技术对管线进行保护.为了对系统的运行现状进行评价和完善优化,以现运行数据为基础,利用ANSYS软件建立了符合现状的模型;利用该模型提出了阴极保护的优化方案,并对其进行评估,模拟结果显示管线保护效果良好.","authors":[{"authorName":"雷宝刚","id":"fd596794-18ba-453c-9a31-2f09a2433eb5","originalAuthorName":"雷宝刚"},{"authorName":"范铮","id":"4f978fbb-2382-45da-b1f4-5d9f1143567e","originalAuthorName":"范铮"},{"authorName":"玉龙","id":"0f3aeaf9-7aac-4920-a385-b88ab6115067","originalAuthorName":"乔玉龙"},{"authorName":"朱永红","id":"746bffc1-e22c-444c-8def-8bd0acb057a0","originalAuthorName":"朱永红"},{"authorName":"李振龙","id":"e6daffa0-27f6-424e-9b15-f07fea4705f8","originalAuthorName":"李振龙"},{"authorName":"潘柳依","id":"91ba1842-6b44-4ed8-8187-26d97274335e","originalAuthorName":"潘柳依"},{"authorName":"李稳宏","id":"8f41aa0a-6aef-40b6-975d-2a95147f0ef1","originalAuthorName":"李稳宏"}],"doi":"","fpage":"613","id":"1c978b0a-bd1a-421e-abe3-208b58285e89","issue":"7","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"43f0522b-e92d-4f05-bc1e-e25c8f89273a","keyword":"ANSYS","originalKeyword":"ANSYS"},{"id":"a8979d91-3d02-49bd-8fd4-222614ed3a60","keyword":"有限元分析","originalKeyword":"有限元分析"},{"id":"f263801a-e04c-408d-a5a9-49431075969c","keyword":"阴极保护","originalKeyword":"阴极保护"},{"id":"d829721e-ee06-4bf3-80f9-98cb66bb78e5","keyword":"集输管道","originalKeyword":"集输管道"}],"language":"zh","publisherId":"fsyfh201307016","title":"天然气集输管道阴极保护系统的布局优化","volume":"34","year":"2013"},{"abstractinfo":"为有效解决靖边气田产水气井金属腐蚀严重的问题,以合成的咪唑啉季铵盐(XSD)为主剂,与三乙醇胺(TEOA),硫脲(THU)进行复配,采用单因素法优选其含量范围后,进一步利用响应面法优化3种成分的含量,开发出高效复配缓蚀剂CY-1.将CY-1加入H2S+CO2溶液中对N80钢进行挂片腐蚀,采用扫描电镜观察腐蚀形貌,采用X射线衍射仪分析腐蚀产物成分,并分析了气井腐蚀的主要原因,采用动电位极化研究了其缓蚀机理.结果表明:当复配缓蚀剂CY-1中XSD,TEOA,THU浓度分别为121.45,70.53,40.50 mg/L时,对N80钢在H2S+CO2溶液中的缓蚀率最高可达98.07%;溶解于水的H2S是导致产水气井金属腐蚀的主要原因;CY-1为以抑制阳极过程为主的混合抑制型金属缓蚀剂.","authors":[{"authorName":"范峥","id":"fb4041dc-e979-44ed-8073-c13e0fcc47d7","originalAuthorName":"范峥"},{"authorName":"玉龙","id":"cf92fced-d627-47ff-8ae2-a92eae99a83c","originalAuthorName":"乔玉龙"},{"authorName":"赵建军","id":"7cb7d537-6dc4-402c-ad4b-9b2fcba505c6","originalAuthorName":"赵建军"},{"authorName":"张小兵","id":"9c5cf46c-1b57-4000-b8ce-4ce47ccb3781","originalAuthorName":"张小兵"},{"authorName":"黄风林","id":"262114b5-b627-4180-9aea-05ee2c47268e","originalAuthorName":"黄风林"},{"authorName":"李稳宏","id":"d5539a30-9b1a-4566-8ed8-6d45d2a46b79","originalAuthorName":"李稳宏"}],"doi":"","fpage":"15","id":"6bdfeecf-1018-4f02-a17a-73cf6d5078f4","issue":"11","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"2767b949-a036-463b-b774-4799a78ceea5","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"98a474c2-4d0d-47ce-865c-74ffb36b9129","keyword":"复配优选","originalKeyword":"复配优选"},{"id":"cb51bc3c-c22c-426d-8fbb-3e850a6abc0d","keyword":"响应面法优化","originalKeyword":"响应面法优化"},{"id":"85c76177-a1e5-4e2d-a084-fc3356f1cf0b","keyword":"腐蚀原因","originalKeyword":"腐蚀原因"},{"id":"655cd2a0-f6ff-4f7b-8f3b-a954c079b8d7","keyword":"缓蚀机理","originalKeyword":"缓蚀机理"},{"id":"7454d8f8-82dc-44a8-990e-2dffca397945","keyword":"产水气井","originalKeyword":"产水气井"}],"language":"zh","publisherId":"clbh201411005","title":"以响应面法优化产水气井复配缓蚀剂","volume":"47","year":"2014"},{"abstractinfo":"利用极化曲线和电化学阻抗谱研究温度对N80和K080SS钢在饱和CO2地层水中电化学腐蚀阴阳极过程的影响.结果表明:N80钢和KO80SS钢随成膜温度的升高,腐蚀加剧,腐蚀电位下的电极反应速度分别由阳极和阴极控制.在30℃条件下N80钢的阳极交流阻抗谱显示活化区与腐蚀产物膜覆盖区并存,基体处于腐蚀状态;温度达到60和90℃时.N80钢腐蚀产物膜基本完全覆盖基体表面,KO80SS钢生成的腐蚀产物膜完整均匀;两种钢的阳极腐蚀均受活化控制.两种钢的阴极腐蚀反应均同时受扩散和活化控制,阴极反应以H2CO3、HCO-3的还原为主,H+的还原占从属地位.","authors":[{"authorName":"董淑娟","id":"18d79953-f442-4070-b40c-14e6d02358b6","originalAuthorName":"董淑娟"},{"authorName":"周根树","id":"51b4aac4-b4f1-46e8-9166-b1b49c55e5e5","originalAuthorName":"周根树"},{"authorName":"玉龙","id":"d605c908-2b15-46ea-8a26-a7f0f6ca57fe","originalAuthorName":"乔玉龙"},{"authorName":"胡兴民","id":"1e1906a3-269d-4229-96f1-b66d56e9841a","originalAuthorName":"胡兴民"}],"doi":"","fpage":"72","id":"8656025d-00be-4f09-a53f-2c3e12ca423e","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"1888ed8b-d3f6-40da-b1d3-f5e32b8ede34","keyword":"N80钢","originalKeyword":"N80钢"},{"id":"05dbf0c5-12ff-4628-9624-2d244290744d","keyword":"KO80SS钢","originalKeyword":"KO80SS钢"},{"id":"1f5db634-d9ff-4566-92bf-0b614ff1cb52","keyword":"温度","originalKeyword":"温度"},{"id":"43249ccf-1c5b-437e-a253-8ad95d312ec2","keyword":"电化学腐蚀","originalKeyword":"电化学腐蚀"}],"language":"zh","publisherId":"jsrclxb201101015","title":"温度对N80和KO80SS钢在饱和CO2地层水中电化学腐蚀的影响","volume":"32","year":"2011"},{"abstractinfo":"拉克金矿区是伊什基里克铜金多金属成矿带中最主要的矿化异常集中区之一,区内与成矿有关的火山岩、浅成-超浅成侵入岩、断裂构造及火山机构构造发育,具有中大型金矿找矿潜力,应进一步加强该区的地质勘查工作,主攻矿床类型为火山-次火山岩型金(铜)矿和斑岩型铜钼(金)矿.","authors":[{"authorName":"孙超","id":"a567335f-9262-42a6-aa90-c9516e59766f","originalAuthorName":"孙超"},{"authorName":"周树亮","id":"e34e877b-edb7-455e-9112-3c6fea23bc27","originalAuthorName":"周树亮"}],"doi":"10.3969/j.issn.1001-1277.2004.01.004","fpage":"11","id":"a5a19ade-0c78-4be1-8b0d-53d3d575cef7","issue":"1","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"26ab388f-fd5a-4429-a86a-6bdb96f73591","keyword":"成矿地质特征","originalKeyword":"成矿地质特征"},{"id":"4f05e6a2-2c98-4811-b9d7-325031ca5794","keyword":"找矿预测","originalKeyword":"找矿预测"},{"id":"b43951c4-bb91-46a9-986c-b93b4adf1c2f","keyword":"新疆西天山","originalKeyword":"新疆西天山"},{"id":"f7c032b7-4e4f-48a8-ae4e-3cb544d6656a","keyword":"拉克金矿区","originalKeyword":"乔拉克金矿区"}],"language":"zh","publisherId":"huangj200401004","title":"新疆西天山拉克金矿区成矿地质特征及找矿预测","volume":"25","year":"2004"},{"abstractinfo":"西藏玉龙铜矿含铜1.6%~1.8%,含硫7.0% ~8.5%,矿石性质复杂,易泥化脉石含量高,属于难选矿石.为实现矿石中铜矿物的高效回收,简化现场工艺流程,采用铜优先浮选工艺处理该矿石,即以BK-404作铜矿物的捕收剂,石灰作黄铁矿的抑制剂,在矿浆pH值=9的低碱条件下分步粗选两次,粗精矿不再磨精选三次.试验结果表明,在原矿含铜1.66%的条件下,采用该工艺小型闭路试验可获得含铜20.63%、铜回收率82.24%的铜精矿.铜优先浮选工艺试验指标良好,减少精选浮选机配置容积,减少铜金属循环量和流失量,使铜矿物得到很好的回收,为现场的流程改造提供理论依据.","authors":[{"authorName":"罗仙平","id":"10658fef-649b-448a-9221-f6dc9969537b","originalAuthorName":"罗仙平"},{"authorName":"王鹏程","id":"59a65228-eb92-49d3-97ed-131e9c10f3e8","originalAuthorName":"王鹏程"},{"authorName":"曹志明","id":"86f9d175-41ba-44c4-95e9-584c6aaf5c9e","originalAuthorName":"曹志明"},{"authorName":"王训青","id":"cdf7ba34-a4ee-4818-b9ed-9199ff1176cb","originalAuthorName":"王训青"},{"authorName":"青岩","id":"4191e158-7ec1-49a1-96df-c3f92a8ef322","originalAuthorName":"青岩"},{"authorName":"陈飞","id":"f49982cb-317f-4cc9-8e72-35935ab611c4","originalAuthorName":"陈飞"}],"doi":"10.3969/j.issn.2095-1744.2016.06.013","fpage":"58","id":"c4ad47c4-323b-4aea-a023-7749a4069429","issue":"6","journal":{"abbrevTitle":"YSJSGC","coverImgSrc":"journal/img/cover/YSJSGC.jpg","id":"76","issnPpub":"2095-1744","publisherId":"YSJSGC","title":"有色金属工程"},"keywords":[{"id":"3bf33169-ed92-4f9a-a6a4-e0e51ce1cf76","keyword":"硫化铜矿","originalKeyword":"硫化铜矿"},{"id":"5cbe38cf-0805-4814-9c68-f0c72d603d26","keyword":"黄铁矿","originalKeyword":"黄铁矿"},{"id":"52a18f2f-01ed-4326-9032-7f126db0e5fb","keyword":"优先浮选","originalKeyword":"优先浮选"},{"id":"19522997-352d-41aa-a396-ea6f70577d7a","keyword":"高效回收","originalKeyword":"高效回收"}],"language":"zh","publisherId":"ysjs201606013","title":"西藏玉龙铜矿硫化铜矿石选矿试验研究","volume":"6","year":"2016"},{"abstractinfo":"通过分析于2009年9月22日—28日期间,在玉龙雪山周边河流白水河采集的河水样品(采样间隔为2 h),对冰雪融水补给径流的日变化特征及其规律进行了深入研究.结果表明,白水河水中所测的阴离子以SO2-4含量最高,其次为NO-3和Cl-;阳离子中主要以Ca2+、Mg2+为主,其次为Na+、K+,不同于冰雪融水中的离子浓度序列Ca2+>Na+>K+>Mg2+,反映了流域内基岩岩性对河水化学性质的影响;水体的pH值平均8.6,电导率介于29.9—73.5μS·cm-1之间,日周期波动幅度较大;受降雨影响时段,各离子含量峰值通常出现在16∶00左右,各离子含量随降雨量的增加呈增加态势(除SO2-4、NO-3外);在无降雨影响下,随径流量的增加,各离子含量表现出减小趋势.","authors":[{"authorName":"史晓宜","id":"30ece7c1-e01b-4448-a0a3-582f9b68641b","originalAuthorName":"史晓宜"},{"authorName":"何元庆","id":"44f86294-66c7-4a3d-a325-05ef4cd07af1","originalAuthorName":"何元庆"},{"authorName":"蒲焘","id":"d57f73a3-c14e-401b-a0d8-da32d6ef6534","originalAuthorName":"蒲焘"},{"authorName":"何则","id":"54d93636-8cef-4753-9249-795d71cd635d","originalAuthorName":"何则"},{"authorName":"牛贺文","id":"fe67ab56-3351-441f-9524-bb7afda7b403","originalAuthorName":"牛贺文"}],"doi":"10.7524/j.issn.0254-6108.2015.10.2015012004","fpage":"1895","id":"2147d279-28c0-4770-8377-d252c6028c2c","issue":"10","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"7a1ee71e-5b9a-4843-9a91-6790662b3a13","keyword":"玉龙雪山","originalKeyword":"玉龙雪山"},{"id":"e37915fb-ab64-4db0-a132-d2b3b236e940","keyword":"白水河","originalKeyword":"白水河"},{"id":"0395c1cf-98e9-41ef-a653-bd794af2b8be","keyword":"水化学特征","originalKeyword":"水化学特征"},{"id":"687bf5b6-282a-4839-a6c8-74f6e67603c7","keyword":"日变化","originalKeyword":"日变化"}],"language":"zh","publisherId":"hjhx201510018","title":"玉龙雪山周边典型河流的水化学日变化特征?","volume":"","year":"2015"},{"abstractinfo":"2014年6-8月分别对丽江-玉龙雪山索道区,甘海子,丽江市区,龙蟠镇等4个地区进行降水采集,共采集87个样品,对主要化学离子(Na+、K+、NH4+、Ca2+、Mg2+、SO42-、Cl-、NO3-)电荷浓度进行分析.结果表明,离子总浓度丽江市区>龙蟠镇>甘海子>索道区.阳离子含量最高的为Ca2+和NH4,阴离子含量最高的为SO42--.分析1997-2014年丽江降水离子含量,SO42-与NO3-的比值逐年下降,表明旅游业和交通运输业对丽江大气环境质量影响显著.采用主因子分析法进行分析,NH4、SO42-、NO3-在第一因子中为高载荷,受人类污染的影响,Na+与K+、C1-在第二因子中高载荷,受海洋源影响.Ca2+、Mg2+在第三因子中高载荷,受陆地源影响.","authors":[{"authorName":"石晓非","id":"6fe65050-b65e-4523-97d6-1c83c5b59b88","originalAuthorName":"石晓非"},{"authorName":"牛贺文","id":"61d8b737-a4bc-450a-b0e3-a449099e9111","originalAuthorName":"牛贺文"},{"authorName":"何元庆","id":"4cbe6e6d-9e42-4de6-86a6-8f541f2bbd62","originalAuthorName":"何元庆"},{"authorName":"齐翠姗","id":"6ba2f013-cbdc-4d41-a2dd-58289f7c1730","originalAuthorName":"齐翠姗"},{"authorName":"蒲焘","id":"e12efe1e-066c-4369-aca0-9776f6af351b","originalAuthorName":"蒲焘"},{"authorName":"史晓宜","id":"7f37ea20-89d3-4a93-ab4a-58a0d552bbc7","originalAuthorName":"史晓宜"}],"doi":"10.7524/j.issn.0254-6108.2017.05.2016112003","fpage":"994","id":"4890ec5a-5350-4419-8c72-fa1208a691cf","issue":"5","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"5e7c5a7f-25ae-48a6-8f9a-d7b8c8d8549b","keyword":"丽江-玉龙雪山","originalKeyword":"丽江-玉龙雪山"},{"id":"c9a0e579-4832-4511-9c5a-7593cb03e738","keyword":"雨水化学","originalKeyword":"雨水化学"},{"id":"4d4b2461-6ae5-4f63-8ac1-e86e9eb06bab","keyword":"人类活动","originalKeyword":"人类活动"}],"language":"zh","publisherId":"hjhx201705007","title":"丽江-玉龙雪山地区大气降水化学特征","volume":"36","year":"2017"},{"abstractinfo":"","authors":[],"doi":"","fpage":"23","id":"7a2bb82b-31d0-4134-a907-3f67059a6fd3","issue":"2","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"8ca2204b-e343-4728-b1af-2400a72be352","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"shjs200202016","title":"美国其顿钢公司直接还原铁生产创记录","volume":"24","year":"2002"},{"abstractinfo":"","authors":[],"doi":"","fpage":"121","id":"df05c141-bd0f-47bb-96ba-d5dc4fd88376","issue":"3","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"293f46d7-70f5-400f-b218-fbc18367dc4e","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"blgfhcl201703027","title":"紧跟新业态开发新需求转换新动能推动新发展——龙德会长在中国建材联合会系统2016年工作总结大会上的讲话","volume":"","year":"2017"},{"abstractinfo":"随着城市化和工业化的发展,空气环境问题日益突出,大气颗粒物污染受到人们越来越多的关注,为了研究城市道路中不同绿地结构对大气不同粒径颗粒物的消减作用,本文选择青岛市城阳区主干道——长城路的4种不同绿地结构(“-灌-草”、“-草”、“-灌”、“灌-草”),测定其对不同粒径颗粒物(PM10、PM2.5、PM1)的消减率.结果表明:(1)不同粒径颗粒物的浓度日变化曲线呈现出“早晚高,中午低”的变化趋势,其中8:00-10:00的颗粒物浓度最高;颗粒物浓度日变化与空气湿度变化相一致,与温度变化相反;(2)4种绿地结构对PM10的消减率表现为“-灌-草”>“-灌”>“灌-草”>“-草”,对PM:5和PM1的消减率表现为“-灌-草”>“-灌”>“-草”>“灌-草”;且各绿地结构对PM2.5的消减能力最强,其次为PM1和PM1o;(3)同一种绿地结构,植物种类越丰富,其消减大气颗粒物的能力越强.","authors":[{"authorName":"孙晓丹","id":"daaf10e4-67f2-4a54-bd2b-fbf4e4be7c4b","originalAuthorName":"孙晓丹"},{"authorName":"李海梅","id":"0985b156-4bd7-4c2a-9e01-f18d6ebc4fbe","originalAuthorName":"李海梅"},{"authorName":"刘霞","id":"41c563cb-8e2d-4701-b1ae-6fa574b9de7e","originalAuthorName":"刘霞"},{"authorName":"徐萌","id":"660cb7e4-86da-4db3-8b76-aa3a3b54ba3d","originalAuthorName":"徐萌"}],"doi":"10.7524/j.issn.0254-6108.2017.02.2016092602","fpage":"289","id":"63a49991-5e73-4beb-bb4c-882957a51f3d","issue":"2","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"4e6c0d1e-f2f8-4ec9-bcfd-ea210628c4a6","keyword":"绿地结构","originalKeyword":"绿地结构"},{"id":"d61ab8f9-56b9-4a78-8b8c-b0fa25a87533","keyword":"不同粒径","originalKeyword":"不同粒径"},{"id":"53570ba8-f899-43dc-a204-37843c2db81e","keyword":"颗粒物","originalKeyword":"颗粒物"},{"id":"4160e522-0f55-4978-88dc-c71a881704b5","keyword":"消减能力","originalKeyword":"消减能力"}],"language":"zh","publisherId":"hjhx201702011","title":"不同绿地结构消减大气颗粒物的能力","volume":"36","year":"2017"}],"totalpage":2,"totalrecord":18}