腐蚀学报(英文), 2011, 23(6): 529-534.
油气田用双金属复合管研究现状
朱世东 1, , 王栋 2, , 李广山 3, {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用硬度、电导率、拉伸和卡恩撕裂性能测试,结合差示扫描量热法(DSC)、金相显微镜(OM)、扫描电镜(SEM)和透射电镜(TEM)研究不同腐蚀条件对Al-Zn-Mg铝合金强韧性能的影响.结果表明:经(25℃,3.5%NaCi;50℃,3.5%NaCl;100℃,3.5%NaCl;25℃,6%NaCl)腐蚀液浸泡后,材料的强度受腐蚀液温度和浓度的影响,随着3.5%NaCl腐蚀液温度的升高,材料的强度呈现一种先降低后升高的趋势,相对于未腐蚀材料,当温度从50℃变化到100℃时,3.5%NaC1腐蚀液浸泡后的材料强度上升比较明显,为11.51 MPa;当温度为25℃时,6%NaC1腐蚀液中材料强度下降较大为10.25 MPa;材料的韧性则随着腐蚀液温度、浓度的升高而降低;经(100℃,3.5%NaCl)腐蚀液浸泡后,材料的韧性与未腐蚀材料有明显差别,韧性值下降10.4%,挤压方向与垂直挤压方向的韧性差值由原来的13.4 N/mm增大为32.4 N/mm.","authors":[{"authorName":"肖涛","id":"da3742de-8a75-4b3f-8b9a-c4cddde321ff","originalAuthorName":"肖涛"},{"authorName":"林化强","id":"86e42882-62fb-4667-b44e-048a5a888a4f","originalAuthorName":"林化强"},{"authorName":"叶凌英","id":"cb847426-a8e7-4602-9fba-529cc70ac0f4","originalAuthorName":"叶凌英"},{"authorName":"孙琳","id":"723ce09a-1b36-406f-a39c-646378f85218","originalAuthorName":"孙琳"},{"authorName":"邓运来","id":"073ce715-061e-4a39-a3ba-08b267417dea","originalAuthorName":"邓运来"}],"doi":"","fpage":"1391","id":"04ee89ab-a9f4-4fbc-a28e-9ab2ccf158d2","issue":"7","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"807dd860-eec2-4e4b-8a2f-0c51ec335787","keyword":"Al-Zn-Mg铝合金","originalKeyword":"Al-Zn-Mg铝合金"},{"id":"c4a6ec1b-9cc6-49d5-b938-936b2bfd6c41","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"c01d69fd-a090-4b16-95cf-dc094cb65487","keyword":"强度","originalKeyword":"强度"},{"id":"931bb7aa-fdf7-46d3-b238-ab0516b48897","keyword":"韧性","originalKeyword":"韧性"}],"language":"zh","publisherId":"zgysjsxb201607004","title":"腐蚀条件对Al-Zn-Mg铝合金强韧性能的影响","volume":"26","year":"2016"},{"abstractinfo":"通过光学显微镜、扫描电镜、透射电镜、强度实验、冲击韧度实验、应力腐蚀实验、剥落腐蚀实验及极化曲线测试,研究不同微量元素(Cr、Mn、Ti、Zr、Cu)含量添加对Al-Zn-Mg铝合金组织、力学性能与腐蚀性能的影响。结果表明:较多的微量元素使得合金内部第二相析出密度变大,对亚晶界/晶界的迁移起阻碍作用而未诱发粒子形核,提升合金抑制再结晶的能力,从而保持细小晶粒及亚晶组织,合金的抗拉强度提升69 MPa,应力腐蚀开裂延迟了108 h。但同时微量元素使得AlFeMnCu等粗大的第二相增多,使自腐蚀电位正移、腐蚀电流密度变小,而塑性、韧性及耐剥落腐蚀性能均有所下降。","authors":[{"authorName":"付高","id":"c6fdb0f5-9258-498e-9992-7eb77287f4f7","originalAuthorName":"付高"},{"authorName":"邓运来","id":"01093af9-0de7-4def-9cfc-e5336c403448","originalAuthorName":"邓运来"},{"authorName":"王亚风","id":"aecbfbce-f845-4adf-bc04-58f3cb9c7e89","originalAuthorName":"王亚风"},{"authorName":"戴青松","id":"f6ee48d0-916b-473f-a703-3c68bfdb891b","originalAuthorName":"戴青松"},{"authorName":"张新明","id":"2f79bc08-2c7a-4594-b2cf-9d17d9b43802","originalAuthorName":"张新明"}],"doi":"","fpage":"2632","id":"0f256bf1-3e25-487c-8dd6-7f797b1901fc","issue":"10","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"648de0c5-8813-4706-adce-583de9a1200c","keyword":"Al-Zn-Mg铝合金","originalKeyword":"Al-Zn-Mg铝合金"},{"id":"3e5c3b3e-d714-4487-a1a6-9e8d8a1bbd6d","keyword":"微量元素","originalKeyword":"微量元素"},{"id":"63355a66-54c0-4455-8fef-53b85ef5426b","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"dac5ae21-7b7f-493f-9b72-5baee334ae66","keyword":"腐蚀性能","originalKeyword":"腐蚀性能"},{"id":"32979833-6769-4d84-a7b6-dea319f245ae","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"zgysjsxb201510003","title":"微量元素含量对Al-Zn-Mg合金组织与性能的影响","volume":"","year":"2015"},{"abstractinfo":"采用Gleeble 1500热压缩模拟试验机研究了Al-Zn-Mg(7005)合金的高温变形组织演化行为.利用TEM分析了合金在不同压缩条件下的组织形貌特征,采用EBSP分析了晶粒间的取向差,研究了其动态再结晶行为.通过回归分析建立了7005合金热变形条件与变形亚晶尺寸间关系的半经验模型.合金平均亚晶大小随温度补偿应变速率Z参数(Zener-Hollomon参数)的降低而增大,其倒数与Z参数的自然对数和流变应力双曲正弦项的自然对数间均满足线性关系.合金在ln Z<21.0条件下变形时,发生几何动态再结晶并形成了细小的等轴再结晶晶粒","authors":[{"authorName":"沈健","id":"d22d8dde-3772-4953-abce-5717394163e4","originalAuthorName":"沈健"},{"authorName":"唐京辉","id":"f865030e-cb5e-467b-a188-067acebe2f1c","originalAuthorName":"唐京辉"},{"authorName":"谢水生","id":"4b689e0b-9fe3-445f-a038-92efc10ab367","originalAuthorName":"谢水生"}],"doi":"10.3321/j.issn:0412-1961.2000.10.006","fpage":"1033","id":"e59d5b83-827e-4012-aea6-3e67f20f6611","issue":"10","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"32ce1980-2ca9-4aed-9326-56deccb6c487","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"3da56fac-a354-404a-ae0a-d087eb847db8","keyword":"压缩","originalKeyword":"压缩"},{"id":"417799e5-f01c-4064-996e-02fe3cf6bcf0","keyword":"亚晶","originalKeyword":"亚晶"},{"id":"dee4c377-d86b-46b8-a4db-821a6240d557","keyword":"几何动态再结晶","originalKeyword":"几何动态再结晶"}],"language":"zh","publisherId":"jsxb200010006","title":"Al-Zn-Mg合金的热变形组织演化","volume":"36","year":"2000"},{"abstractinfo":"在电子结构上揭示Al-Zn-Mg合金时效强化机理,利用\"固体与分子经验电子\"理论中的键距差法,计算了Al-Zn-Mg合金中的过饱和固溶体,GP区,η相(MgZn2)以及T相(Al2Mg3Zn3)的电子结构,从而在价电子结构上解释A1-Zn-Mg合金在时效过程中GP区和η (MgZn2)稳定相对合金强化的原因,以及高温过时效时合金强度降低的原因.","authors":[{"authorName":"明科宇","id":"9e77d294-8f19-4167-b515-4845a3562380","originalAuthorName":"明科宇"},{"authorName":"李松湖","id":"ca0db538-b75f-4026-b691-16ef32841e28","originalAuthorName":"李松湖"},{"authorName":"邹积峰","id":"39222020-da23-4904-ad84-da9a3fbd03f6","originalAuthorName":"邹积峰"},{"authorName":"集兴伟","id":"b3b93175-1f74-4731-be2d-57d6144ddac8","originalAuthorName":"集兴伟"}],"doi":"10.3969/j.issn.1004-244X.2010.05.012","fpage":"46","id":"f2fb33d2-1ae4-43a0-9b2a-a6b0e5b77859","issue":"5","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"0987c61b-8f09-4229-b477-3b2c015a26d7","keyword":"Al-Zn-Mg合金","originalKeyword":"Al-Zn-Mg合金"},{"id":"057ed556-52c9-4dd2-a102-f78edb757f5a","keyword":"时效强化","originalKeyword":"时效强化"},{"id":"7a58f95f-1c21-4b1e-b849-59aba794c43d","keyword":"价电子结构","originalKeyword":"价电子结构"},{"id":"acde6166-e74f-4b96-9f39-6b12525bfdc1","keyword":"GP区","originalKeyword":"GP区"},{"id":"4d13e231-dc1e-42f1-b052-fad9878c0f7a","keyword":"EET理论","originalKeyword":"EET理论"}],"language":"zh","publisherId":"bqclkxygc201005012","title":"Al-Zn-Mg合金价电子理论研究","volume":"33","year":"2010"},{"abstractinfo":"对净化前、后合金氢含量和力学性能进行测试,并采用TEM对等离子净化后的Al-Zn-Mg合金时效组织进行分析.结果表明:Al-Zn-Mg合金氢含量由0.17 mL/100 g Al降低到0.11 mL/100 g Al;经460 ℃×120 min固溶、130℃×16 h时效处理后,晶内的析出相细小弥散,晶界上析出相连续分布,GP区起主要的强化作用;Rm达到590 MPa,Rp02达到510 MPa,断后伸长率达到8.5%,硬度达到160HB.","authors":[{"authorName":"宋建民","id":"5e638840-a9b7-41bd-a8b3-bfe8c7a29196","originalAuthorName":"宋建民"},{"authorName":"翟景","id":"8e089339-8608-46bd-93ff-ad78c4a43c50","originalAuthorName":"翟景"},{"authorName":"王生","id":"3859a0dd-a013-49c5-8c35-55abbea2ea65","originalAuthorName":"王生"},{"authorName":"贺新民","id":"9f3fce12-f934-43c0-b405-ed3432fa5939","originalAuthorName":"贺新民"},{"authorName":"张广明","id":"70036392-d2d0-44e6-9099-2af098bdaba6","originalAuthorName":"张广明"},{"authorName":"张立君","id":"d755b4a7-bac8-4549-b945-56b09cbf5cb0","originalAuthorName":"张立君"}],"doi":"33-1331/TJ.20120301.1544.004","fpage":"70","id":"954a2ab8-e627-44f9-8fac-8da76dd9ef3e","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"00e50d00-19ec-4a4f-86c9-b46199e08bdc","keyword":"Al-Zn-Mg合金","originalKeyword":"Al-Zn-Mg合金"},{"id":"8feaa284-32f3-4431-8383-d02766e02505","keyword":"等离子净化","originalKeyword":"等离子净化"},{"id":"d43b799c-2428-4ee8-9fce-8a40b48956da","keyword":"时效处理","originalKeyword":"时效处理"},{"id":"15e4d25d-3fbc-420c-904c-444d5becdf08","keyword":"微观组织","originalKeyword":"微观组织"}],"language":"zh","publisherId":"bqclkxygc201202021","title":"等离子净化Al-Zn-Mg合金时效组织与性能研究","volume":"35","year":"2012"},{"abstractinfo":"采用铸锭冶金法制备了Al-6.2Zn-2.0Mg-0.25Sc-0.12Zr和Al-6.2Zn-2.0Mg合金,测试不同处理态的拉伸力学性能,利用金相显微镜和透射电子显微镜研究其不同处理态的显微组织。结果表明:添加微量Sc和Zr可明显细化合金的铸态晶粒,并显著提高 Al-Zn-Mg合金的力学性能,其作用机理主要为Al3(Sc,Zr)造成的细晶强化、亚结构强化和弥散强化。","authors":[{"authorName":"杨磊","id":"d33ba652-770f-4c3b-9f42-60e2722ac67a","originalAuthorName":"杨磊"},{"authorName":"吴建生","id":"c3d5d1fa-0c83-4df2-8dbe-ccadcae1fe94","originalAuthorName":"吴建生"},{"authorName":"潘青林","id":"f78e34d5-939f-4d08-a77e-b9a8d8a62a8c","originalAuthorName":"潘青林"},{"authorName":"尹志民","id":"95ff26f5-bb54-46d0-83bd-4e849093c6bf","originalAuthorName":"尹志民"}],"doi":"10.3969/j.issn.1001-4381.2001.07.008","fpage":"29","id":"d52588b5-3cd6-43b2-809c-429327dc026e","issue":"7","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"7b64d58e-fcf2-442c-80df-fb579b683af4","keyword":"Al-Zn-Mg合金","originalKeyword":"Al-Zn-Mg合金"},{"id":"a942ca86-3f28-4c79-ae23-f58e81ea2fa3","keyword":"钪","originalKeyword":"钪"},{"id":"bdf1bfa6-19fc-4087-b5ce-a8c2a4facb33","keyword":"锆","originalKeyword":"锆"},{"id":"031ae60b-c417-4a52-b977-32afa03b09fb","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"034351d0-af08-4eff-b1e5-ce887989ef34","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"clgc200107008","title":"微量Sc和Zr对Al-Zn-Mg合金组织与性能的影响","volume":"","year":"2001"},{"abstractinfo":"研究了Al-Zn-Mg系合金经时效-回归-再时效多级热处理后硬度(HRA)的改变.用小角X射线散射研究了多级时效热处理中合金微结构的改变和硬度改变的机理.","authors":[{"authorName":"孟昭富","id":"216a30a1-173e-4495-9e25-879040d82c13","originalAuthorName":"孟昭富"},{"authorName":"郑勇","id":"83521796-b68d-49fe-b9ed-be3425c191c7","originalAuthorName":"郑勇"},{"authorName":"龙厚文","id":"8e307c06-638e-43d3-a6a2-4ecebc504ac2","originalAuthorName":"龙厚文"},{"authorName":"刘玉惠","id":"73ce90d0-4424-40cf-891e-5b26581ec70a","originalAuthorName":"刘玉惠"}],"categoryName":"|","doi":"","fpage":"479","id":"3323af31-fa3b-4457-9a3e-f56fc06023cf","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"a3559a87-ba18-4a48-8e4a-af5aacb3197f","keyword":"Al-Zn-Mg合金","originalKeyword":"Al-Zn-Mg合金"},{"id":"db321ece-3f56-4656-8934-fb3c800536f5","keyword":" aging","originalKeyword":" aging"},{"id":"5efd3e28-c2da-4d1b-a55f-07d90ff59234","keyword":" retrogression","originalKeyword":" retrogression"},{"id":"23e170c8-8858-4b93-95f3-601a05986b41","keyword":" hardness","originalKeyword":" hardness"},{"id":"1edc1c38-e06b-4bc7-bc9f-b2d24f15b773","keyword":" small-angle X-ray scattering","originalKeyword":" small-angle X-ray scattering"},{"id":"25cb4a2a-2e18-4086-b293-8d1dff9aa4bf","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_1997_5_1","title":"在时效-回归-再时效处理过程中Al-Zn-Mg系合金硬度的改变","volume":"33","year":"1997"},{"abstractinfo":"采用硬度、拉伸性能、电阻率和抗应力腐蚀性能测试及金相组织观察等方法,研究了微量Zr、Er对Al-4.4Zn-2.4Mg(质量分数,下同)合金组织与性能的影响.结果表明,单独添加Zr的细晶作用优于单独添加Er以及Er、Zr复合添加,Er、Zr复合添加能显著抑制合金的再结晶行为,Er、Zr复合添加后合金的力学性能和单独添加微量Zr的基本相当,但Er、Zr复合添加后合金抗应力腐蚀性能优于单独添加微量Er、Zr,Er、Zr复合添加的Al-Zn-Mg合金综合性能最好.Er、Zr复合添加提高应力腐蚀抗力是通过抑制再结晶获得纤维组织间接实现的.","authors":[{"authorName":"黄兰萍","id":"7eb7a836-ae7a-488c-8563-6b7fed1e1dfa","originalAuthorName":"黄兰萍"},{"authorName":"陈康华","id":"6c827c1e-385d-43e2-a06a-c94f4bcc5042","originalAuthorName":"陈康华"},{"authorName":"李松","id":"f1618fa1-5c1c-4f15-aa64-bda92856899b","originalAuthorName":"李松"}],"doi":"","fpage":"1778","id":"cf5bab3b-d8c3-4725-b480-87bd552b2107","issue":"10","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"d827e72f-caa7-4b3c-b335-2cdc40d9f725","keyword":"Al-Zn-Mg-(Zr)-(Er)合金","originalKeyword":"Al-Zn-Mg-(Zr)-(Er)合金"},{"id":"f841805a-8cd4-4bd3-af90-9f018f902530","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"b09380cb-263b-452c-80c7-ba293e4d6bde","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"1dac6c70-6cdd-47fb-9c17-24c38d6339b9","keyword":"应力腐蚀抗力","originalKeyword":"应力腐蚀抗力"}],"language":"zh","publisherId":"xyjsclygc200910020","title":"微量Zr、Er对Al-Zn-Mg合金组织与性能的影响","volume":"38","year":"2009"},{"abstractinfo":"采用Gleeble 1500热压缩模拟试验机研究了Al-Zn-Mg(7005)合金的高温变形组织演化行为, 利用TEM分析了合金在不同压缩条件下的组织形貌特征, 采用EBSP分析了晶粒间的取向差, 研究了其动态再结晶行为, 通过回归分析建立了7005合金热变形条件与条形亚晶尺寸关系的半经验模型.","authors":[{"authorName":"沈健","id":"444f5f46-239b-4c60-a297-7bb9d1aa6411","originalAuthorName":"沈健"},{"authorName":"唐京辉","id":"ee17e8d7-ed0d-4c95-acc7-3029c882ecc0","originalAuthorName":"唐京辉"}],"categoryName":"|","doi":"","fpage":"1033","id":"60ea7ad8-44a5-4a37-8e0a-a38e96ad4ce1","issue":"10","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"f4ef85f3-a1c0-44a5-a525-1482fd3c5e29","keyword":"压缩","originalKeyword":"压缩"},{"id":"f23aa78a-6177-4bdb-9804-d52cff4c2f9f","keyword":"null","originalKeyword":"null"},{"id":"068832d0-a0d7-4017-a171-39f14adada15","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2000_10_4","title":"Al-Zn-Mg合金的热变形组织演化","volume":"36","year":"2000"},{"abstractinfo":"利用硬度计(HV)、光学显微镜和透射电镜系统地研究了微量Zr(0.22%)对Al—5.0Zn-1.75Mg合金的沉淀过程、临界形核温度T′_c和显微组织参数的影响,并与Mn,Cr,Cu的影响进行了比较。结果表明,Zr能明显提高再结晶温度和细化晶粒,但无提高T′_c的能力。低温时效(T_a≤160℃),Zr有抑制GBP、促进MPt长大和提高HV的作用;但高温时效(T_a≥180℃)又有促进这两种参数急剧长大和强烈降低HV的作用。在选定的时效条件下(120—200℃),含Zr合金的PFZ均比无Zr合金窄。文中还讨论了Zr对Al-Zn-Mg合金的作用机理问题。","authors":[{"authorName":"林肇琦","id":"f0571744-5c0f-4bd9-ae7e-3028c0912f44","originalAuthorName":"林肇琦"},{"authorName":"赵钢","id":"c50106ec-fd57-4e48-8b5e-1aac598f950a","originalAuthorName":"赵钢"},{"authorName":"孙贵经","id":"cb8369e8-e3af-4229-b819-a3e944396c99","originalAuthorName":"孙贵经"},{"authorName":"杨胜坤","id":"d2e3b881-0ff8-4218-8186-c51289e9e824","originalAuthorName":"杨胜坤"}],"categoryName":"|","doi":"","fpage":"7","id":"c6e81151-0656-4813-901a-142e32fdb90a","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1985_6_6","title":"微量Zr对Al-Zn-Mg合金沉淀过程和显微组织参数的影响","volume":"21","year":"1985"}],"totalpage":6131,"totalrecord":61305}