欢迎登录材料期刊网

材料期刊网

高级检索

研究了SPS温度对球磨熔体快淬Fe70Cr8Mo2Si5B15粉末以及MA Fe73.5Cu1Nb3Si13 5B9 和Fe80Co4Nb7B9纳米晶粉末的烧结块体合金组织结构与磁性能的影响.结果表明: (1)在30MPa/5min条件下,块体合金相对密度随着烧结温度的升高而增加,当烧结温度为1000℃时,Fe70Cr8Mo2Si5B15合金相对密度已达99%以上,当烧结温度进一步升高至1050℃后, Fe73.5Cu1Nb3Si13.5B9和Fe80Co4Nb7B9合金相对密度也达到99%;(2)烧结块体合金的主要组成相为α-Fe相,尚存在少量的第二相金属间化合物,这些块体合金α—Fe相的晶粒尺寸均处于纳米级范围内,以Fe70Cr8Mo2Si5B15块体合金的晶粒尺寸为最小,其平均晶粒尺寸约50nm; (3)随着烧结温度的升高,这些块体合金的饱和磁感应强度Bs增大,矫顽力Hc随之降低,以Fe70Cr8Mo2Si5B15块体合金的矫顽力Hc(4.1kA·m-1)最低.

The influence of SPS sintering temperature on microstructure and magnetic properties of the sintering bulk alloy of melt quenching Fe70Cr8Mo2Si5B15 powders by ball
milling and MA Fe73.5Cu1Nb3Si13.5B9 and Fe80Co4Nb7B9 nanocrystalline powders was studied. The results show that (1) under 30MPa/5min
conditions, the relative densities of bulk alloys increase with the increase of sintering temperatures. When Fe70Cr8Mo2Si5B15 bulk alloy
sintered at 1000℃, its relative density reaches above 99%, and when Fe73.5Cu1Nb3Si13.5B9 and Fe80Co4Nb7B9
bulk alloys sintered at 1050℃, their relative densities reach to 99%; (2) the main phase of sintering bulk alloys is α-Fe phase, and a
little second phase intermetallic compound. The grain size of α-Fe phase in bulk alloys is in nanometer range, Fe70Cr8Mo2Si5B15
bulk alloy has the finest grain size, its average grain size is about 50nm; (3) with the sintering temperature increasing, the specific saturate magnetization Bs of these bulk alloys increases and coercive
force Hc decreases, respectively. Fe70Cr8Mo2Si5B15 bulk alloy has the lowest Hc, 4.1kA·m-1.

参考文献

[1] Yoshizawa Y, Oguma S, Yamauchi K. J. Appl. Phys., 1988, 64: 6044--6046.
[2] Suzuki K, Kataoka N, Inoue A, et al. Mater. Trans. JIM, 1990, 31 (8): 743--747.
[3] Suzuki K, Kataoka N, Inoue A, et al. Mater. Trans. JIM, 1991, 32 (10): 961--968.
[4] Makino A. Mater. Trans. JIM, 1995, 36 (7): 924--938.
[5] Kawamura Y, Inoue A, Kojima A, et al. Journal of the Japan Society of Powder and Powder Metallurgy, 1995, 42 (1): 40--46.
[6] Kojima A, Horikiri H, Kawamura Y, et al. Mater. Sci. Eng., 1994, A179/A180: 511--515.
[7] Kojima A, Mizushima T, Makino A, et al. Journal of the Japan Society of Powder and Powder Metallurgy, 1996, 43 (5): 613--618.
[8] Shen B L, Kimura H, Inoue A, et al. Journal of the Japan Society of Powder and Powder Metallurgy, 2001, 48 (9): 858--862.
[9] 卢斌, 易丹青, 刘岩, 等(LU Bin, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (5): 1138--1144.
[10] LU Bin, YI Dan-qing, YAN Biao, et al. The Chinese Journal of Nonferrous Metals, 2004, 14 (4): 686--691.
[11] 大森 守, 平井敏雄. まてりあ, 1998, 37 (4): 295--301.
[12] 卢斌, 易丹青, 刘会群, 等. 中国有色金属学报, 2002, 12 (6): 1214--1217.
[13] Manivel M, Chattopadhyay R K, Majumder B. Journal of Alloys and Compounds, 2000, 297: 199--205.
[14] Huang B, Jiang H G, Perez R J, et al. Nanostrctured Materials, 1999, 11 (8): 1009--1016.
[15] Chiriac H, Moga A E, Urse M, et al. Journal of Magnetism and Magnetic Materials, 1999, 203: 159--161.
[16] Herzer G. J Magn Magn Mater, 1992, 112: 258--262.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%