欢迎登录材料期刊网

材料期刊网

高级检索

超细晶Cu-0.1at% Ge合金在液氮温度下轧制后在150℃退火1h,分别研究了超细晶铜锗合金在退火前后的显微硬度及力学性能.结果表明,通过低温退火,超细晶铜锗合金的显微硬度和强度得到提高,而均匀伸长率下降.

参考文献

[1] Valiev RZ.;Alexandrov IV.;Islamgaliev RK. .Bulk nanostructured materials from severe plastic deformation [Review][J].Progress in materials science,2000(2):103-189.
[2] Sarma, V.S.;Wang, J.;Jian, W.W.;Kauffmann, A.;Conrad, H.;Freudenberger, J.;Zhu, Y.T. .Role of stacking fault energy in strengthening due to cryo-deformation of FCC metals[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(29/30):7624-7630.
[3] Bahmanpour, H.;Kauffmann, A.;Khoshkhoo, M.S.;Youssef, K.M.;Mula, S.;Freudenberger, J.;Eckert, J.;Scattergood, R.O.;Koch, C.C..Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011:230-236.
[4] San, X.Y.;Liang, X.G.;Chen, L.P.;Xia, Z.L.;Zhu, X.K. .Influence of stacking fault energy on the mechanical properties in cold-rolling Cu and Cu-Ge alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(27):7867-7870.
[5] 姜英,王友林,代虎波.黄铜H68轧制后在不同温度退火样品的晶界特征分布[J].材料热处理学报,2012(07):111-115.
[6] 易成,关绍康,卢广玺,赵红亮,王盼.退火工艺对铸轧5052铝合金组织和性能的影响[J].材料热处理学报,2011(04):52-57.
[7] 李才巨,黄素贞,张代明,朱心昆,杨凤丽,唐海林,李钢.冷轧及退火工艺对纯铜力学性能的影响[J].金属热处理,2007(10):66-68.
[8] Huang X;Hansen N;Tsuji N .Hardening by annealing and softening by deformation in nanostructured metals.[J].Science,2006(5771):249-251.
[9] N. Jia;Y. D. Want;S. D. Wu .Anomalous Hardening in Copper due to the Growth of Deformation-Induced Micro-Twins after Annealing[J].Scripta materialia,2006(7):1247-1252.
[10] X. Y. Zhang;Q. Liu;X. L. Wu;A. W. Zhu .Work softening and annealing hardening of deformed nanocrystalline nickel[J].Applied physics letters,2008(26):261907-1-261907-3-0.
[11] Naoya Kamikawa;Xiaoxu Huang;Nobuhiro Tsuji .Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed[J].Acta materialia,2009(14):4198-4208.
[12] T.Ungar;S.Ott;P.G.Sanders .Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis[J].Acta materialia,1998(10):3693-3699.
[13] Z. ZHANG;F. ZHOU;E. J. LAVERNIA .On the Analysis of Grain Size in Bulk Nanocrystalline Materials via X-Ray Diffraction[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2003(6):1349-1355.
[14] Williamson G K;Smallman R E .Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum[J].Philosophical Magazine,1956,1(01):34-46.
[15] Smallman R E;Westmacott K H .Stacking faults in face-centred cubic metals and alloys[J].Philosophical Magazine,1957,2(17):669-683.
[16] Vinogradov A;Merson D L;Patlan V et al.Effect of solid solution hardening and stacking fault energy on plastic flow and acoustic emission in Cu-Ge alloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2003,341(1-2):57-73.
[17] Bader M;Eldis G T;Wadimont H .The mechanisms of anneal hardening in Cu-Al alloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1976,7(02):249-255.
[18] Vitek J M;Warlimont H .The mechanism of anneal hardening in dilute copper alloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1979,10(12):1889-1892.
[19] Y.M. Wang;S S. Cheng;Q.M. Wei .Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni[J].Scripta materialia,2004(11):1023-1028.
[20] A. Hasnaoui;H. Van Swygenhoven;P.M. Derlet .On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: a molecular dynamics computer simulation[J].Acta materialia,2002(15):3927-3939.
[21] Varschavsky A.;Donoso E. .A calorimetric investigation on the kinetics of solute segregation to partial dislocations in Cu-3.34at%Sn[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(1/2):208-215.
[22] Varschavsky A.;Donoso E. .Differential isothermal calorimetric evaluations of short-range-ordering kinetics in Cu-10 at percent Zn[J].Materials Letters,2000(2):95-100.
[23] Svetlana Nestorovic;Ivana Markovic;Desimir Markovic .Influence of thermomechanical treatment on the hardening mechanisms and structural changes of a cast Cu-6.6 wt.%Ag alloy[J].Materials & design,2010(3):1644-1649.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%