欢迎登录材料期刊网

材料期刊网

高级检索

为了研究金属材料在疲劳载荷下的温度变化,采用红外热像系统对高周疲劳载荷下6061-T6铝合金的温度演化进行分析,用热像图对疲劳裂纹尖端的塑性区进行测量.结果显示,疲劳加载作用下,循环次数达到107次时6061-T6铝合金试样表面温度的变化分为四个阶段:初始温升阶段、温度缓降阶段、温度二次缓慢上升阶段和温度快速上升阶段.结合热弹性理论、铝合金塑性变形的微观机制分析并预测疲劳载荷下温度的演化和宏观裂纹扩展时裂纹尖端塑性区域大小.宏观裂纹开始扩展时,裂纹尖端的塑性区域可达3.6 mm2,红外热像仪测得结果为3.46 mm2,测试结果与理论结果吻合.

The temperature evolution of 6061-T6 aluminum alloy under high cyclic fatigue loading was investigated by infrared thermography, and the plastic zone at crack tip was measured afterward by thermograph. The results indicated that four stages of temperature profiles were recorded when loaded up to 107 cycles:an initial increasing stage, the gradual decreasing stage, the gradual increasing stage, and the abruptly rising stage. The thermoelastic theory and micromechanism of aluminum alloy plastic deformation were used to explain and predict the temperature evolution under fatigue loading and the plastic region at crack tip during macrocrack propagating. The plastic region at crack tip was predicted to be 3.46 mm2 , while the theoretical result was 3.6 mm2 .

参考文献

[1] HUANG S;ZHOU J Z;SHENG J et al.Effects of laser peening with different coverage areas on fatigue crack growth properties of 6061-T6 aluminnum alloy[J].International Journal of Fatigue,2013,47:292-299.
[2] 瞿玉峰;黄坚;李敏 等.6061-T6铝合金高速高功率CO2激光填丝焊接性研究[J].中国激光,2011,38(05):1-6.
[3] L. Zhang;X. S. Liu;S. H. Wu;Z. Q. Ma;H. Y. Fang.Rapid determination of fatigue life based on temperature evolution[J].International Journal of Fatigue,2013:1-6.
[4] Junling Fan;Xinglin Guo;Chengwei Wu.A new application of the infrared thermography for fatigue evaluation and damage assessment[J].International Journal of Fatigue,2012:1-7.
[5] LUONG M P .Fatigue limit evaluation of metals using an infrared thermographic technique[J].Mechanics of Materials,1998,28(155):1-6.
[6] B. Yang;P. K. Liaw;H. Wang;L. Jiang;J. Y. Huang;R. C. Kuo;J. G. Huang .Thermographic investigation of the fatigue behavior of reactor pressure vessel steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(1/2):131-139.
[7] CHRYSOCHOOS A;MAISONNEUVE O;MARTIN G et al.Plastic and dissipated work and stored energy[J].Nuclear Engineering and Design,1989,114(03):323-333.
[8] Bagavathiappan, S.;Lahiri, B.B.;Saravanan, T.;Philip, J.;Jayakumar, T..Infrared thermography for condition monitoring - A review[J].Infrared physics and technology,2013:35-55.
[9] Pastor ML;Balandraud X;Grediac M;Robert JL .Applying infrared thermography to study the heating of 2024-T3 aluminium specimens under fatigue loading[J].Infrared physics and technology,2008(6):505-515.
[10] TAKAHASHI Y;SHIKAMA T;YOSHIHARA S et al.Study on dominant mechanism of high-cycle fatigue life in 6061-T6 alumimun alloy through microanalyses of microstructurally small cracks[J].Acta Materialia,2012,60(06):2554-2567.
[11] Ying-Ping Guan,Zhen-Hua Wang,Bin Wu,Wei-Xin Wang,Wan-Tang Fu.Mechanism and Inhibition of Grain Coarsening of Al-Mg-Si Alloy in Hot Forming[J].哈尔滨工业大学学报(英文版),2013(03):67-74.
[12] 卞贵学,陈跃良,张勇,赵晨.2A12铝合金疲劳裂纹的成核与扩展机理[J].材料研究学报,2012(05):521-526.
[13] BANERJEE S .Influence of specimen size and configuration on the plastic zone size:toughness and crack growth[J].Eng Fract Meek,1981,15(03):343-390.
[14] RANC N;PALIN-LUC T;PARIS P C.About the effect of plastic dissipation in heat at crack tip on the stress intensity factor under cyclic loading[J].International Journal of Fatigue,2013:inpress.
[15] LU S K;YI X H;YU L et al.Comparison of the simulation and experimental fatigue crack behaviors in the aluminum alloy HS6061 - T6[J].Procedia Engineering,2011,12:242-247.
[16] 王为清,杨立,范春利,吕事桂,石宏臣.金属材料低周疲劳生热的有限元数值模拟[J].机械工程学报,2013(04):64-69.
[17] 程正富.固体热力学中的绝热不变量和开尔文公式[J].西南师范大学学报(自然科学版),2000(03):253-256.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%