欢迎登录材料期刊网

材料期刊网

高级检索

应用欧拉双流体模型和氧化铝组分输运模型相结合的方法,考虑阳极气泡影响的修正k–ε湍流模型,并引入合适的氧化铝溶解和消耗函数,对铝电解槽熔体内氧化铝输运过程中的阳极气体–电解质气液两相流进行数值模拟。结果表明:气体作用力和电磁力共同作用对电解质流场有重要影响;气体作用在局部位置对氧化铝浓度的均匀分布有一定的效果,而电磁力作用可以更好地将氧化铝快速输运到全槽区域;氧化铝浓度分布呈周期状态变化,且该周期状态变化与初始浓度无关;下料点位置应布置在阳极间缝与中缝的交叉位置以及流场大漩涡流线的边缘处,这将有利于氧化铝快速溶解,并随电解质运动将氧化铝输运到全槽区域,使氧化铝浓度快速达到均匀。

The anode gas/electrolyte two-phase flow occurring during the transport process of alumina in the melts of aluminum reduction cells was simulated numerically by using an Euler-Euler two-fluid model coupled with a transport equation for alumina concentration. A modifiedk–ε turbulence model was used to describe the liquid phase turbulence in the simulation by assuming the pseudo turbulence resulted from anodic gas. The effects of alumina dissolution and consumption were involved in the alumina transport equation. The simulated results show that both anode gas forces and electromagnetic forces (EMFs) have a significant impact on the bath flow field. The anode gas forces have certain effect on the uniform alumina distribution in some local positions, but the EMFs have a wider range of influence and promote the transport process in alumina in the whole cell quickly. The concentration distribution can reach a periodic state, and this final periodic state is independent of the initial condition. The feeding points should be located at the intersection positions of central channel and inter-anode channel as well as the edge of the large vortex streamlines to speed up the dissolution and transport process of alumina, resulting in the more uniform alumina distribution.

参考文献

[1] 刘业翔, 李劼. 现代铝电解[M]. 北京:冶金工业出版社, 2008. LIU Ye-xiang, LI Jie. Modern aluminum electrolysis[M]. Beijing:Metallurgical Industry Press, 2008.,2008.
[2] WELCH B J, KUSCHEL G I. Crust and alumina powder dissolution in aluminum smelting electrolytes[J]. JOM, 2007, 59(5):50-54.,2007.
[3] 徐君莉,石忠宁,高炳亮,邱竹贤.氧化铝在熔融冰晶石中的溶解[J].东北大学学报(自然科学版),2003(09):832-834.
[4] KAN Hong-min,ZHANG Ning,WANG Xiao-yang.Dissolution rate determination of alumina in molten cryolite-based aluminum electrolyte[J].中南大学学报(英文版),2012(04):897-902.
[5] HAVERKAMP R G, WELCH B J. Modelling the dissolution of alumina powder in cryolite[J]. Chemical Engineering and Processing, 1998, 37(6):177-187.,1998.
[6] BEREZIN A I, ISAEVA L A, BELOLIPETSKY V M, PISKAZHOVA T V, SINELNIKOV V V. A model of dissolution and heating of alumina charged by point-feeding system in “virtual cell” program[C]//KVANDE H. Light Metals 2005. San Francisco CA:TMS, 2005:151-154.,2005.
[7] LILLEBUEN B, BUGGE M, HOIE H. Alumina dissolution and current efficiency in Hall-Héroult cells[C]//BEARNE G. Light Metals 2009. San Francisco CA:TMS, 2009:389-394.,2009.
[8] 张家奇 .基于数学模型的铝电解槽动态过程及其预报系统研究[D].中南大学,2011.
[9] VASYUNINA N V, VASYUNINA I P, MIKHALEV Y G, VINOGRADOV A M. The solubility and dissolution rate of alumina in acidic cryolite aluminous melts[J]. Russian Journal of Non-ferrous Metals, 2009, 50(4):338-342.,2009.
[10] FENG Y Q, COOKSEY M A, SCHWARZ M P. CFD modeling of alumina mixing in aluminium reduction cells[C]//HAGNI A M. Light Metals 2010. Seattle, WA:TMS, 2010:451-456.,2010.
[11] FENG Y Q, COOKSEY M A, SCHWARZ M P. CFD modeling of alumina mixing in aluminium reduction cells[C]//LINDSAY J. Light Metals 2011. San Diego, CA:TMS, 2011:543-548.,2011.
[12] 张翮辉 .铝电解槽内熔体涡运动与氧化铝输运过程的数值模拟研究[D].中南大学,2012.
[13] 李劼,张翮辉,张红亮,徐宇杰,杨帅,赖延清.大型铝电解槽电解质流场涡结构的数值模拟[J].中国有色金属学报,2012(07):2082-2089.
[14] von KAENEL R, ANTILLE J, ROMERIO M, BESSON O. Impact of magnetohydrodynamic and bubbles driving forces on the alumina concentration in the bath of an Hall-Héroult cell[C]//BARRY S. Light Metals 2013. San Antonio:TMS, 2013:585-590.,2013.
[15] THOMAS H. Numerical simulation and optimization of the alumina distribution in an aluminium electrolysis pot[D]. Lausanne:École Polytechnique Fédérale de Lausanne, 2011.,2011.
[16] 詹水清,周孑民,李茂,董英,刘志明,周益文,杨建红.开孔阳极铝电解槽熔体中气液两相流数值模拟[J].化工学报,2013(10):3612-3619.
[17] ZHAN Shui-qing, LI Mao, ZHOU Jie-min, YANG Jian-hong, ZHOU Yi-wen. A CFD-PBM coupled model predicting anodic gas size distribution in aluminum reduction cells[C]//GOHN G. Light Metals 2014. San Diego:TMS, 2014:777-782.,2014.
[18] 詹水清,周孑民,李茂,董英,周益文,杨建红.铝电解槽熔体内阳极气体分布特性的模拟研究[J]. 中南大学学报:自然科学版, 2014, 45(7):2424-2431. ZHAN Shui-qing, ZHOU Jie-min, LI Mao, DONG Ying, ZHOU Yi-wen, YANG Jian-hong. Numerical simulation of anodic gas distribution in aluminum reduction cells[J]. Journal of Central South University:Science and Technology, 2014, 45(7):2424-2431.,2014.
[19] CHEN P, DUDUKOVIC M P, SANVAL J. Three-dimensional simulation of gas column flows with gas coalescence and breakup[J]. Journal of AICHE, 2005, 51(3):696-712.,2005.
[20] 周孑民,李茂,杨建红,周益文,詹水清.铝电解槽熔体内多相多场仿真结题报告[R].长沙:中南大学, 2013. ZHOU Jie-min, LI Mao, YANG Jian-hong, ZHOU Yi-wen, ZHAN Shui-qing. A concluding report on the multi-phase and multi-field coupled simulation in the melts of aluminum reduction cells[R]. Changsha:Central South University, 2013.,2013.
[21] THONSTAD J, JOHANSEN P, KRISTENSEN E W. Some properties of alumina sludge[C]//MCMINN C J. Light Metals 1980. San Francisco:TMS, 1980:227-239.,1980.
[22] CHESONIS D C, JOHANSEN S T, ROLSETH S, THONSTAD J. Gas induced bath circulation in aluminium reduction cells[J]. Journal of Applied Electrochemistry, 1989, 19(5):703-712.,1989.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%