中国稀土学报, 2011, 29(4): 407-410.
稀土重轨钢的静态再结晶研究
包喜荣 1, , 陈林 2, , 李刚 3, {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"大小叶片、串列叶片这两类非常规压气机负荷能力是备受研究者关注的重要问题.本文根据Schweitzer叶栅负荷能力经验关系,在对大小叶片、串列叶片简化为前后两排等效叶片以及流动不可压、忽略雷诺数、来流附面层厚度等影响因素的假设下,给出了这两类非常规压气机构型负荷能力的评估关系.分析表明,相同总展弦比条件下,前述三类构型压气机的压升(负荷)能力由小到大顺序为常规叶片、大小叶片、串列叶片;而如果放开展弦比的工程选择,则常规叶片负荷能力未必不如大小叶片和串列叶片,但这并不妨碍大小叶片和串列叶片作为压气机构型的重要选择.","authors":[{"authorName":"余佳","id":"c4bc36be-4399-4a2c-8e43-dbe5c203de40","originalAuthorName":"余佳"},{"authorName":"季路成","id":"5ac25804-86f7-49c2-bbd4-99d067c09128","originalAuthorName":"季路成"}],"doi":"","fpage":"288","id":"b83424c7-ab86-4bce-a4e7-4a3e8612511d","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"a7f43246-838a-44ca-8967-b9cf49e1f633","keyword":"压气机","originalKeyword":"压气机"},{"id":"a28e0980-d7f8-456b-863b-f88ce6f01742","keyword":"大小叶片","originalKeyword":"大小叶片"},{"id":"24989b0d-adf7-433d-88f7-2997eb1c258d","keyword":"串列叶片","originalKeyword":"串列叶片"},{"id":"faab8d5d-9b52-44f8-8a2d-14e564562e70","keyword":"负荷能力","originalKeyword":"负荷能力"},{"id":"772c4aae-10c7-40fc-9b5a-eb7edb4fdfa7","keyword":"叶栅等效扩压器","originalKeyword":"叶栅等效扩压器"}],"language":"zh","publisherId":"gcrwlxb201502013","title":"两类非常规压气机构型负荷能力分析","volume":"36","year":"2015"},{"abstractinfo":"采用二维非稳态RANS方法结合Spalart-Allmaras湍流模型,对高雷诺数下串列双圆柱流致振动进行数值计算.利用粗糙带改变圆柱表面结构,详细分析串列双圆柱流致振动响应及能量转换特性.结果表明双圆柱产生流致振动时,上下游圆柱的振幅和频率响应曲线出现涡致振动初始分支、涡致振动上部分支和驰振分支,圆柱驰振时的最大振幅达到了2.8D.在所研究的整个Re数范围内,双圆柱都能有效实现能量收集.在Re=100000时,圆柱流致振动能量转换最大功率达到了41.16W.","authors":[{"authorName":"丁林","id":"3880d0e9-bcc9-4e35-8170-638c678f3f97","originalAuthorName":"丁林"},{"authorName":"张力","id":"bb685587-153d-4cf7-8832-206b670adfb3","originalAuthorName":"张力"},{"authorName":"姜德义","id":"f7392589-d510-4c36-b33a-b074470fc0e5","originalAuthorName":"姜德义"}],"doi":"","fpage":"2146","id":"9f561f3f-4bd5-43b6-bec9-2c19a7e08148","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"0cc89df2-c5b8-46c0-acf4-ceddebb2e6bf","keyword":"圆柱","originalKeyword":"圆柱"},{"id":"91be80b5-ff35-4e1d-8fc7-732829d3f8c6","keyword":"旋涡脱落","originalKeyword":"旋涡脱落"},{"id":"fa190b29-0bf8-409a-9d8d-64a4229223a4","keyword":"流致振动","originalKeyword":"流致振动"},{"id":"f15a8afa-a05c-4a04-a8f6-018d98f77ab0","keyword":"能量收集","originalKeyword":"能量收集"}],"language":"zh","publisherId":"gcrwlxb201510015","title":"串列双圆柱流致振动及能量转换特性","volume":"36","year":"2015"},{"abstractinfo":"在北京串列实验室建立了次级束流实验装置, 用于放射性核束物理和核天体物理研究. 先后开展了7Be(d, n) 8B, 11C(d, n)12N, 8Li(d, p)9Li 和 6He(p, n)6Li核天体物理重要反应的研究. 介绍了串列加速器升级工程的进展情况. 该工程在现有串列加速器的基础上, 将建立100 MeV/200 μA的质子回旋加速器、在线同位素分离器和超导加速段. 在此装置上, 将可以产生质量数最高为120, 强度最高为109 particles/s的放射性束流.","authors":[{"authorName":"柳卫平","id":"07c00e6a-882d-4763-b967-eaebe59a27a2","originalAuthorName":"柳卫平"},{"authorName":"李志宏","id":"20e6fde2-53b2-4b9a-a38c-495c64e38b74","originalAuthorName":"李志宏"},{"authorName":"白希祥","id":"e701c4df-3053-4792-ad8e-84329ef3970d","originalAuthorName":"白希祥"},{"authorName":"王友宝","id":"4d14a92d-7f05-4512-9b16-2efbcb6c99dc","originalAuthorName":"王友宝"},{"authorName":"连钢","id":"42ab1924-bc0a-4259-ac01-28648f4bcd57","originalAuthorName":"连钢"},{"authorName":"曾晟","id":"a536497e-0fd0-4ca8-be8a-872511db553e","originalAuthorName":"曾晟"},{"authorName":"颜胜权","id":"d1687810-91b5-4669-b2f4-9ac51dff48e7","originalAuthorName":"颜胜权"},{"authorName":"王保祥","id":"c3ed1dfa-9089-4dde-8ae6-9801fce9dffa","originalAuthorName":"王保祥"},{"authorName":"赵志祥","id":"40b663b5-5141-44cc-8eb4-7297a2dc4e7e","originalAuthorName":"赵志祥"},{"authorName":"张天爵","id":"a7375dce-b516-4ca9-b267-0146ff7c6af1","originalAuthorName":"张天爵"},{"authorName":"唐洪庆","id":"92e3a255-b4be-44ee-9f70-78e643a6e470","originalAuthorName":"唐洪庆"},{"authorName":"杨丙凡","id":"c90ffa05-3670-4af8-a218-e32f5bb273cb","originalAuthorName":"杨丙凡"},{"authorName":"关暇令","id":"cd79d889-9bf5-4895-9c77-986d52fd0788","originalAuthorName":"关暇令"},{"authorName":"崔保群","id":"dc49ab66-fc63-42b5-9b88-3bd6f35eb8ef","originalAuthorName":"崔保群"}],"doi":"10.3969/j.issn.1007-4627.2004.04.004","fpage":"276","id":"dd9a358a-514b-4b4d-a872-02198683c215","issue":"4","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"bb21ea71-f9ca-4aa2-b596-739f601944c3","keyword":"次级束流实验装置","originalKeyword":"次级束流实验装置"},{"id":"cc4e5738-c775-43eb-91ba-3b5fd55c3a0a","keyword":"核天体物理反应","originalKeyword":"核天体物理反应"},{"id":"df01dc19-93e8-444f-94a2-a4b3055bbad9","keyword":"放射性束流加速器","originalKeyword":"放射性束流加速器"}],"language":"zh","publisherId":"yzhwlpl200404004","title":"原子能院的核天体物理研究和串列升级工程进展","volume":"21","year":"2004"},{"abstractinfo":"本文采用数值模拟研究串列叶栅后排静叶周向位置对压气机级性能的影响.通过对数值结果的分析给出了串列叶栅在压气机中级的匹配方法及两排静叶周向最佳匹配位置,结合总压损失和壁面流动详细分析了三个典型周向位置对串列叶栅流场的影响.","authors":[{"authorName":"李绍斌","id":"c5b07190-66ea-4a09-9df2-72bfdcd2859b","originalAuthorName":"李绍斌"},{"authorName":"王松涛","id":"b55347ad-08b6-4312-bae8-b7c390a3c78a","originalAuthorName":"王松涛"},{"authorName":"冯国泰","id":"55abbb64-2477-4eb6-a01e-e763b3e2cf9e","originalAuthorName":"冯国泰"},{"authorName":"王仲奇","id":"e93c44cd-edb4-469c-99f4-800bd714cff3","originalAuthorName":"王仲奇"}],"doi":"","fpage":"943","id":"73eee1ed-45ba-44b7-871b-5ceccf06e63f","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"ecb3aed3-4cdc-4a5e-975e-6913cd3eb6e2","keyword":"串列叶栅","originalKeyword":"串列叶栅"},{"id":"c8f2b45e-c407-49b2-a3fd-f398fee2e769","keyword":"周向位置","originalKeyword":"周向位置"},{"id":"89f675d1-4aa4-4248-b85e-731940a25f51","keyword":"匹配","originalKeyword":"匹配"}],"language":"zh","publisherId":"gcrwlxb200406012","title":"串列叶栅后排静叶周向位置对压气机性能影响的数值研究","volume":"25","year":"2004"},{"abstractinfo":"本文对串列双尺度圆柱的绕流换热进行了二维瞬态数值模拟.主圆柱直径D固定,小圆柱的直径d与主圆柱直径之比d/D设为0.2,0.5,0.8和1.基于主圆柱的直径的ReD数为100和200,间距比L/D=2~7.其中小圆柱分布位于上游和下游.研究表明:对于串列双尺度圆柱布置,都存在一个临界间距比,此时流态变化为尾流撞击模式.而在尾流撞击模式下使用不等直径的双圆柱系统不仅可以带来更好的换热性能,同时系统的阻力系数会下降;但是L/D ≥4后,系统换热系数随间距的改变变化很小,说明此时继续增加间距比并不能获得更好的换热性能,以增加圆柱之间间距来增大换热量就没有意义.","authors":[{"authorName":"张东辉","id":"edcd04b8-55ec-4f74-82df-b2549fec333d","originalAuthorName":"张东辉"},{"authorName":"石珊","id":"949c0955-5556-4354-97da-30d1182d33b2","originalAuthorName":"石珊"},{"authorName":"王军","id":"744b4303-ebf7-4f0c-bbe8-0ec9578b48e6","originalAuthorName":"王军"},{"authorName":"陈代芬","id":"3e3d71e3-c0bc-472c-8721-977c3b5d833c","originalAuthorName":"陈代芬"}],"doi":"","fpage":"2457","id":"6a09a620-370e-4427-affb-5567430d0c1a","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2f3ffa05-3925-4ccd-8598-3819ee488534","keyword":"多尺度","originalKeyword":"多尺度"},{"id":"cefecd13-4898-43f3-bfc5-7ec11e76f8eb","keyword":"圆柱绕流","originalKeyword":"圆柱绕流"},{"id":"36e3506a-d70c-4927-8180-d2f74bec4086","keyword":"对流换热","originalKeyword":"对流换热"}],"language":"zh","publisherId":"gcrwlxb201511031","title":"双尺度串列圆柱绕流换热特性之研究","volume":"36","year":"2015"},{"abstractinfo":"本文从换热器管束中最基本的串列布置形式出发研究处于过渡流区域的小管径换热器的性能变化。通过基于作者研究开发的复合网格计算方法模拟了在低、中雷诺数条件下,串列双圆柱随中心距的变化下的流场、温度场的变化特性,并分析了其机理。计算结果表明,随着圆柱间中心距的逐渐增大,圆柱尾流呈现出从不稳定到稳定再到不稳定的变化规律。通过研究发现,两圆柱中间流场是否稳定与这一区域的面面是否是连续的负值有着密切的关系,而流场的变化规律同两圆柱间的面/um的变化规律也十分相似。","authors":[{"authorName":"赵舟","id":"a760f990-29e8-4e3d-b44f-6db95ab068b7","originalAuthorName":"赵舟"},{"authorName":"周少东","id":"e1edcbac-f6e5-45aa-9079-ed1c88614e39","originalAuthorName":"周少东"},{"authorName":"袁银男","id":"b4e9e2cd-a0d0-4af5-a479-4baaf86c5730","originalAuthorName":"袁银男"},{"authorName":"喜冠南","id":"480cded8-56dd-4472-b144-4ea63afa2b8e","originalAuthorName":"喜冠南"}],"doi":"","fpage":"2194","id":"714da9f1-5125-47d2-b172-535f3360c07e","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"0cb78c6e-4959-4366-825f-83f3db1f36e9","keyword":"小管径换热器","originalKeyword":"小管径换热器"},{"id":"6b37dffd-b409-4342-8a96-11656f85b1f7","keyword":"过渡流","originalKeyword":"过渡流"},{"id":"08b85828-2a5f-4709-a7f1-b3d286e8bbcb","keyword":"串列双圆柱","originalKeyword":"串列双圆柱"},{"id":"9523910b-2286-4240-96df-8f43ba91a23d","keyword":"数值计算","originalKeyword":"数值计算"},{"id":"8f35ac26-b997-43bd-acab-a55ef1ed2c5c","keyword":"复合网格系统","originalKeyword":"复合网格系统"}],"language":"zh","publisherId":"gcrwlxb201212044","title":"过渡流下管束的流动、传热特性研究——串列双圆柱流场研究","volume":"33","year":"2012"},{"abstractinfo":"数值模拟三维串列双圆柱在不同间距比下湍流流态及其辐射声场.采用大涡模拟(LES)求解非定常不可压缩Navier-Stokes方程得到瞬时流场数据,从而得到声源相关数据,求解基于FW-H积分方程的Farassat-1A方程计算载荷噪声得到相应声场分布.通过对不同间距比下相应的声场及观测点的声压频谱图进行比较可以发现:随着间距的变化,流场呈现出3种不同的流态,其声场也呈现不同的特点,在临界间距比下,总噪声值最大.","authors":[{"authorName":"刘敏","id":"04d44826-9b73-4110-90d3-315a3dfe73c0","originalAuthorName":"刘敏"},{"authorName":"刘飞","id":"8cbf3d59-1953-449a-83a5-cbc957f23c57","originalAuthorName":"刘飞"},{"authorName":"胡亚涛","id":"cb7ca3ac-3cc6-43bf-9cd1-366e78028924","originalAuthorName":"胡亚涛"},{"authorName":"甘加业","id":"5da24d6e-3824-46a6-bd31-1f16e56785b3","originalAuthorName":"甘加业"},{"authorName":"王嘉冰","id":"509e4dcd-5102-4794-8dbd-8160ee73dbb2","originalAuthorName":"王嘉冰"},{"authorName":"吴克启","id":"3f097093-d725-4005-b90f-237c621905b0","originalAuthorName":"吴克启"}],"doi":"","fpage":"403","id":"b3206181-a938-4412-ad7a-32ff5408f015","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"0a2c25b2-0d10-48df-b023-dc8c6d93eda9","keyword":"串列圆柱","originalKeyword":"串列圆柱"},{"id":"9475fce0-2804-4642-bf2c-51f7d0e024c4","keyword":"气动声场","originalKeyword":"气动声场"},{"id":"c3c8b56c-cc47-4aff-87a9-daa9ff020c7d","keyword":"气动流场","originalKeyword":"气动流场"},{"id":"cdf5f1ac-c33f-49d1-a5d6-62be39f3355f","keyword":"大涡模拟","originalKeyword":"大涡模拟"},{"id":"6ee6c05f-7827-4897-8e48-d5fe43088cc4","keyword":"临界间距比","originalKeyword":"临界间距比"}],"language":"zh","publisherId":"gcrwlxb200803011","title":"三维串列双圆柱绕流气动流场及声场模拟","volume":"29","year":"2008"},{"abstractinfo":"本文采用基于空间分解算法的分子动力学并行模拟方法,研究了微尺度、低雷诺数(Re=40)下串列等大的双圆柱绕流现象。结果表明:随着间距比L*/D*的增加,流动存在3种特征状态:当L*/D*〈1.1时,同单一物体的绕钝体流动相似;当1.1〈L*/0*〈3.5时,涡脱落现象只在下游圆柱出现,在两圆柱之间有交替附着于下游圆柱的双涡,且圆柱间涡的尺寸随间距比的增加而增大;当L*/D*〉3.5时,上下游圆柱后均产生涡脱落,但上游圆柱后涡的发展过程存在一定相位超前。上述流动特性与宏观尺度下的特性相同,但临界间距提前。此外,还得到了Strouhal数随间距比的变化规律。","authors":[{"authorName":"杨波","id":"db00845d-0d1c-45b1-934c-39b0b91849c5","originalAuthorName":"杨波"},{"authorName":"何雅玲","id":"b0aeb27e-3920-4f81-bae2-a849533f26c1","originalAuthorName":"何雅玲"},{"authorName":"殷欣","id":"20e13677-2a46-434a-a1e6-98c318e63888","originalAuthorName":"殷欣"},{"authorName":"曹文","id":"6dfb347f-15e6-4823-99c8-f13464c97d23","originalAuthorName":"曹文"}],"doi":"","fpage":"1807","id":"4fce5ae6-0427-4145-8d11-10debc303f88","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4f25582f-a5f0-4746-9743-dc97c7d937b8","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"},{"id":"9c5e0797-cc4c-4448-b4ad-6a48f1273669","keyword":"并行计算","originalKeyword":"并行计算"},{"id":"222bd5f6-6450-4003-8019-c1331010e26e","keyword":"串列双圆柱绕流","originalKeyword":"串列双圆柱绕流"}],"language":"zh","publisherId":"gcrwlxb201111002","title":"微尺度串列双圆柱绕流的分子动力学并行模拟","volume":"32","year":"2011"},{"abstractinfo":"空压机第三级叶轮的叶片严重腐蚀,经光谱、能谱及X射线分析,结果表明叶片腐蚀是因进入空压机的空气中含有大量SO2有害气体和第二级中间冷却器放水器排水不正常,使第三级叶片处于含硫的酸性气氛中而引起的.","authors":[{"authorName":"陈联满","id":"bb221a0e-31a8-4fda-84d5-30689e41e7f5","originalAuthorName":"陈联满"}],"doi":"10.3969/j.issn.1001-0777.2002.02.011","fpage":"35","id":"c1cf7b8b-2ca3-4bc0-8854-1a8eb3de7141","issue":"2","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"2ecc1c44-88c8-4fc2-964b-1fd2adac1294","keyword":"叶轮叶片","originalKeyword":"叶轮叶片"},{"id":"e903692a-6e77-4c38-8803-b47edf2ff1c6","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"f5f67b7f-89fc-46e8-8a89-5ec26f48cd31","keyword":"空压机","originalKeyword":"空压机"}],"language":"zh","publisherId":"wlcs200202011","title":"空压机叶片腐蚀分析","volume":"","year":"2002"},{"abstractinfo":"利用在HI-13串列加速器的在束γ终端上建立的多普勒线移衰减法、反冲距离多普勒线移法和快时间延迟符合法等3种寿命测量方法,开展了原子核手征对称性、磁转动等核结构热点课题的研究工作.实验结果表明,130Cs的伙伴带具有很好的手征特性,而106Ag的候选带并非手征双带.根据测量的能级寿命提取的B(M1)值表明,106Ag的正宇称晕带和107Ag的正、负宇称晕带都具有典型的磁转动特性.此外,寿命测量数据还为解释和理解不同的同位素链中展现出的形状演化、形状共存、形状相变及临界点对称性等物理现象提供了有价值的实验证据.","authors":[{"authorName":"郑云","id":"c6be6f4a-c7cf-42ac-a093-74d35d4263fc","originalAuthorName":"郑云"},{"authorName":"吴晓光","id":"2be86a94-fae6-4d33-92e3-0f8ede4d1eff","originalAuthorName":"吴晓光"},{"authorName":"李广生","id":"a1ada426-c3e3-432e-a84c-fc16ffc9ef86","originalAuthorName":"李广生"},{"authorName":"李聪博","id":"e303dad5-adea-4d6f-aa07-8097af65f6ee","originalAuthorName":"李聪博"},{"authorName":"陈启明","id":"951abb21-0575-43d4-b085-04e383685c17","originalAuthorName":"陈启明"},{"authorName":"竺礼华","id":"d386a4c6-61bb-498b-a93d-0a34831dcc4b","originalAuthorName":"竺礼华"},{"authorName":"贺创业","id":"900e6739-61a6-4b38-b479-c9c61ae977b7","originalAuthorName":"贺创业"},{"authorName":"郝昕","id":"b35304e3-c920-4b1d-80a9-25f0db8d9fd1","originalAuthorName":"郝昕"},{"authorName":"王烈林","id":"e5fc28b4-7337-45d6-a418-b6a792672d52","originalAuthorName":"王烈林"},{"authorName":"姚顺和","id":"c960a790-8a85-4ef6-b0a6-6856154318a3","originalAuthorName":"姚顺和"},{"authorName":"刘颖","id":"5ce0796a-5599-45a3-a0c8-edc151deb79d","originalAuthorName":"刘颖"},{"authorName":"李立华","id":"30575eac-990f-4a2c-b8aa-c49457779f7f","originalAuthorName":"李立华"},{"authorName":"汪金龙","id":"123b48c9-6c4e-457d-b771-7aef6d000eea","originalAuthorName":"汪金龙"},{"authorName":"钟健","id":"89993590-c1e5-46b1-979e-3014f8231180","originalAuthorName":"钟健"},{"authorName":"周文奎","id":"4ac8a59e-4c8c-4a72-8e9a-e8f37546b78b","originalAuthorName":"周文奎"},{"authorName":"邓利涛","id":"b299fc87-0e9e-4fa8-be0a-74a79937de1a","originalAuthorName":"邓利涛"},{"authorName":"朱宝吉","id":"a9df6167-bae3-49c2-95c0-171935131675","originalAuthorName":"朱宝吉"}],"doi":"10.11804/NuclPhysRev.33.04.375","fpage":"375","id":"9d6d60ea-bf8c-4ab2-99b9-a2032f396a5e","issue":"4","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"523ff405-0961-4ce7-ab31-9a061ef0979c","keyword":"能级寿命","originalKeyword":"能级寿命"},{"id":"df4f4041-9f83-4dd5-88b8-b7d790a0647a","keyword":"核结构","originalKeyword":"核结构"},{"id":"24ccad5c-ee98-43cb-bdbf-a9b863efde69","keyword":"多普勒线移衰减法","originalKeyword":"多普勒线移衰减法"},{"id":"df8359fc-4497-4fd5-89b8-a71a371461c1","keyword":"反冲距离多普勒线移法","originalKeyword":"反冲距离多普勒线移法"},{"id":"4b4218b1-c705-49ae-82a3-26db27fb6963","keyword":"快时间延迟符合法","originalKeyword":"快时间延迟符合法"}],"language":"zh","publisherId":"yzhwlpl201604001","title":"基于HI-13串列加速器在束γ终端原子核激发态寿命测量的核结构研究","volume":"33","year":"2016"}],"totalpage":116,"totalrecord":1157}