欢迎登录材料期刊网

材料期刊网

高级检索

近净成形Ti-Al金属间化合物多孔材料具有优异的特性,但制备过程中由于Ti,Al元素粉末反应合成及孔隙演变的复杂性,导致这种新型多7L材料的孔结构很难控制。通过对Ti-Al元素粉末在反应合成过程中的显微结构、物相以及孔结构进行观测和分析,揭示了近净成形Ti-Al多孔金属间化合物的孔隙形成及生长的演变过程。结果表明,在Al元素两阶段的偏扩散过程中,在快速扩散组元A1的位置,在Kirkendall效应以及与孔径成反比的张应力的共同作用下,Ti-Al合金多孔材料中的Kirkendal孔隙随着Al元素的快速扩散逐渐长大;Ti-Al合金多孔材料中的Kirkendall孔隙是以生坯中Al颗粒的变形形状为模板进行生长并连通,经烧结驱动力微观调整后随合金成分的均匀化而被稳定下来,形成由大量高度连通孔隙和很少一部分细小闭合孔隙组成的孔结构。

Near-net-shaping Ti-Al intermetallic compound porous material has excellent properties. However, the complexity of pore evolution during the reactive synthesis of Ti/Al elemental powders leads to the deficiency of the pore structure controllability. In order to reveal the pore formation and growth mechanism of near-net-shaping Ti-Al intermetallic compound porous material, the microstructure, phase evolution and pore structure during the reactive synthesis of Ti/Al elemental powders were investigated thoroughly and detailedly. The results show that the Kirkendall pores in porous Ti-AI alloy formed at the site of Al element in both Al metal and TiAl3 phase during two fast diffusion stages of Al. The pores began to grow due to the coactions of the Kirkendall effect and the existence of tensile stress with inverse ratio to the pore diameter. Based on the template of the deformed Al metal in green compacts, the Kirkendall pores in porous Ti-Al alloy grew to connect with each other. After being stabilized with the uniform procedure of alloy composition, the pore structure showed the characteristics of a combination of highly connected pores and a few closed pores.

参考文献

[1] W.J. Wang;J.P. Lin;Y.L. Wang .Isothermal corrosion TiAl-Nb alloy in liquid zinc[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(0):194-201.
[2] Z.Tang;F.Wang .Hot-Corrosion Behavior of TiAl-Base Intermetallics in Molten Salts[J].Oxidation of Metals,1999(3/4):235-250.
[3] Kamide H;Kashima H .Hot Corrosion Behaviour of TiAl with Salt in Artificial Sea-Water[J].Corrosion Engineering,1997,46(02):83-89.
[4] ZHENG Zhi,JIANG Yao,DONG Hong-xing,TANG Lie-min,HE Yue-hui,HUANG Bai-yun.Environmental corrosion resistance of porous TiAl intermetallic compounds[J].中国有色金属学报(英文版),2009(03):581-585.
[5] D. Hu;X. Wu;M.H. Loretto .Advances in optimisation of mechanical properties in cast TiAl alloys[J].Intermetallics,2005(9):914-919.
[6] Kim Y W .Advances in the Fundamental Understanding for Designing Engineering Gamma TiAl Alloys[J].Transactions of the Chinese Institute of Engineers Series A,1999,22(01):13-25.
[7] Zhong Z;Zou D;Li S .Advance in Ti3Al and TiAl Intermetallic Materials[J].Acta Metallurgica Sinica,1995,8(4 - 6):531-541.
[8] 邢毅,麻洪秋,况春江.Fe3Al金属间化合物多孔材料的研究[J].粉末冶金技术,2005(04):263-267.
[9] 穆柏春,于景媛,李强,孙旭东.Ti-Al基微孔材料的自蔓延高温合成[J].中国有色金属学报,2002(z1):48-53.
[10] Kamynina O K;Vadchenko S G;Sytschev A E et al.High-Porosity TiAl Foam by Volume Combustion Synthesis[J].International Journal of Self-Propagating High-Temperature Synthesis,2007,16(03):137-140.
[11] He Yuehui;Jiang Yao;Xu Nanping et al.Fabrication of Ti-Al Micro/nano Sized Porous Alloys through the Kirkendall Effect[J].Advanced Materials,2007,19:2102-2106.
[12] Y. Jiang;Y.H. He;N.P. Xu .Effects of the Al content on pore structures of porous Ti-Al alloys[J].Intermetallics,2008(2):327-332.
[13] Haiyan Gao;Yuehui He;Peizhi Shen .Porous FeAl intermetallics fabricated by elemental powder reactive synthesis[J].Intermetallics,2009(12):1041-1046.
[14] H. Y. Gao;Y. H. He;P. Z. Shen .Effect of heating rate on pore structure of porous FeAl material[J].Powder Metallurgy,2008(2):171-176.
[15] Tu KN;Gosele U .Hollow nanostructures based on the Kirkendall effect: Design and stability considerations[J].Applied physics letters,2005(9):3111-1-3111-3-0.
[16] Yin Y;Rioux R M;Erdonmez C K et al.Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect[J].Science,2004,304(5671):711-714.
[17] Zhang L Z;Yu J C;Zheng Z et al.Fabrication of Hierarchical Porous Iron Oxide Films Utilizing the Kirkendall Effect[J].Chemical Communications,2005,21:2683.
[18] McCullough C;Valencia J J;Levi C G et al.Phase Equilibria and Solidification in Ti-Al Alloys[J].Acta Metallurgica,1989,37(05):1321-1336.
[19] 江垚,贺跃辉.反应合成Ti-35%Al多孔合金的膨胀特性[J].材料研究学报,2010(02):191-195.
[20] Wang G X;Dahms M .TiAl-Based Alloys Prepared by Elemental Powder Metallurgy[J].Powder Metallurgy International,1992,24(04):219-225.
[21] 刘咏,黄伯云,贺跃辉.元素粉末冶金方法制备TiAl基合金[J].粉末冶金材料科学与工程,1999(03):189-194.
[22] 黄培云.粉末冶金原理[M].北京:冶金工业出版社,1981:373-400.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%