{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"综述了国内外高温镁合金的研究进展,讨论了镁合金的高温机理和提高镁合金高温变性能的方法,对高温镁合金的研究开发提出了一些建议.","authors":[{"authorName":"李冬升","id":"44439487-1c97-4208-ac67-de9224394622","originalAuthorName":"李冬升"},{"authorName":"程晓农","id":"23c792cd-c3fe-4d71-956e-92e0264e57ef","originalAuthorName":"程晓农"}],"doi":"","fpage":"424","id":"85ef20a9-19f5-4fa1-86b7-b32ef2558dc3","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"137b41aa-7b44-44b8-806f-1ae0f8391c47","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"1262ebb3-996b-4e23-a0c2-d512fadad222","keyword":"耐热","originalKeyword":"耐热"},{"id":"85ff2a74-b87a-4b71-8fde-f8090bf02916","keyword":"","originalKeyword":"抗蠕变"}],"language":"zh","publisherId":"cldb2006z1134","title":"镁合金研究进展","volume":"20","year":"2006"},{"abstractinfo":"新一代奥氏体耐热钢在氧化过程中自发形成连续、稳定、致密的氧化铝层,与传统的在金属表面形成Cr2O3保护层的不锈钢相比,具有更优异的高温抗氧化性能和良好的能力。详细地分析了新型高温氧化奥氏体耐热钢的抗氧化机理,并且探讨了一些合金元素对新型奥氏体耐热钢在高温含10%水蒸气的气氛中抗氧化性能的影响。指出新一代奥氏体耐热钢在氧化过程中形成稳定的纳米级沉淀相NbC,以及在高温时形成的稳定Fe2Nh和NiAl沉淀相,有力地改善了其变性能和高温力学性能。最后展望了这类以Al2O3为抗氧化层的新型奥氏体耐热钢的应用前景。","authors":[{"authorName":"徐向棋","id":"450e06f2-1716-4aaa-94a7-5f6357913b07","originalAuthorName":"徐向棋"},{"authorName":"吕昭平","id":"4dc951b9-9381-4917-aa1f-d23c1e69341e","originalAuthorName":"吕昭平"}],"doi":"","fpage":"1","id":"f25145cd-ccc4-4abd-8c83-1af2c28462fd","issue":"12","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"3111a12e-f8e6-4570-8518-2f64636ced90","keyword":"奥氏体","originalKeyword":"奥氏体"},{"id":"4e97d2b0-5a5d-452d-8a4c-d5556a936011","keyword":"耐热钢","originalKeyword":"耐热钢"},{"id":"797629f9-3d07-4006-9aa3-c99363f444bb","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"df2cd198-6b12-4722-b293-d686b3b395f4","keyword":"抗氧化","originalKeyword":"抗氧化"},{"id":"ab788fcc-567c-44fc-a129-3ba265afcc60","keyword":"","originalKeyword":"抗蠕变"}],"language":"zh","publisherId":"zgcljz201112001","title":"新一代新型高温氧化奥氏体耐热钢的研究进展","volume":"30","year":"2011"},{"abstractinfo":"研究了最近发展的工业用TiAl合金的显微组织, 对合金中不断的析出相进行了细致的分析. Ti-47Al-2W-0.5Si合金主要表现为包括γ等轴晶和层片状晶团的双态组织. 由于合金元素W对β相稳定化有序化的重要作用, 合金析出不同形态的B2结构Ti(Al, W)相. 而Si的加入使合金产生了大量的ξ-Ti5Si3颗粒相. 该相主要分布在α2/γ界面上, 与α2和γ保持共格关系.","authors":[{"authorName":"殷为民","id":"9fd3a771-c825-45b6-8d1c-c127ed916bcd","originalAuthorName":"殷为民"},{"authorName":"郭建亭","id":"8dd7ae17-11a0-43fc-b230-6da6591203b3","originalAuthorName":"郭建亭"},{"authorName":"V.Lupinc","id":"f60b4027-10a2-4ea0-8e4f-fef4bdc5ec2c","originalAuthorName":"V.Lupinc"}],"categoryName":"|","doi":"","fpage":"37","id":"91a8a78e-dafa-48fb-927a-dc6d089c1696","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"49bd69dc-ceba-4fe3-b23b-b02dcafe0cf8","keyword":"TiAl合金","originalKeyword":"TiAl合金"},{"id":"9dc21232-46cb-400f-a530-12aaa25d65bd","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_1999_1_19","title":"一种新型TiAl合金的显微组织分析","volume":"35","year":"1999"},{"abstractinfo":"研究了Ti-47Al-2W-0.5Si铸造合金的力学行为和变形机制.结果表明,合金的室温-高温屈服强度和650℃变强度都超过IN713LC镍基高温合金的比屈服强度和比变强度,表现出优异的中温力学性能.在变过程中,随着载荷和温度的增加,合金的最小变速率随之增大,可用方程εm=A(σ/E)10exp(-420/RT)来描述.位错在界面处繁殖,并在α2/γ层片中缠结和塞积,导致合金的初始应变速率降低.当位错运动受阻时,可以通过孪生方式使内应力得到缓解,在第一阶段就可以发生孪生和剪切现象.在高温应力作用下,α2片层发生粗化和相转变.此外,还对合金的实际应用效果进行了考核,并说明了该合金的发展方向.","authors":[{"authorName":"周兰章","id":"1bdfa508-f8ad-4c0c-ac86-9e88c6f401f9","originalAuthorName":"周兰章"},{"authorName":"郭建亭","id":"8885d168-95a1-484c-b17e-88791344f33c","originalAuthorName":"郭建亭"},{"authorName":"V.Lupinc","id":"81724908-3365-40b8-8af3-368377d83a64","originalAuthorName":"V.Lupinc"},{"authorName":"M.Maldini","id":"7e9a1979-d0bd-4079-928e-53eed185755e","originalAuthorName":"M.Maldini"}],"categoryName":"|","doi":"","fpage":"785","id":"fdcbcdf9-8e42-41cc-a76d-b045c8d9c4d3","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"9c0678f6-f109-4003-93d8-61c30f224401","keyword":"金属间化合物","originalKeyword":"金属间化合物"},{"id":"5da00350-0998-4c02-8533-9a7755afe2c9","keyword":"null","originalKeyword":"null"},{"id":"4e54198a-a412-4e79-97fc-91ca06e5760b","keyword":"null","originalKeyword":"null"},{"id":"8c9739ab-5f73-4a4d-a243-c3b604b18882","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2001_8_15","title":"Ti-47Al-2W-0.5Si合金的高温力学行为和变形机制","volume":"37","year":"2001"},{"abstractinfo":"研究了Ti-47Al-2W-0.5Si铸造合金的力学行为和变形机制.结果表明,合金的室温-高温屈服强度和650℃变强度都超过IN713LC镍基高温合金的比屈服强度和比变强度,表现出优异的中温力学性能.在变过程中,随着载荷和温度的增加,合金的最小变速率随之增大,可用方程εm=A(σ/E)10exp(-420/RT)来描述.位错在界面处繁殖,并在α2/γ层片中缠结和塞积,导致合金的初始应变速率降低.当位错运动受阻时,可以通过孪生方式使内应力得到缓解,在第一阶段就可以发生孪生和剪切现象.在高温应力作用下,α2片层发生粗化和相转变.此外,还对合金的实际应用效果进行了考核,并说明了该合金的发展方向.","authors":[{"authorName":"周兰章","id":"93e27a3d-b3a3-49de-9cc4-1c9b0486c5b6","originalAuthorName":"周兰章"},{"authorName":"郭建亭","id":"2b6a0a9d-57d5-46d5-8683-989f6c90fa84","originalAuthorName":"郭建亭"},{"authorName":"V.Lupinc","id":"a7a2acd3-0a04-4fbb-9d21-77dbe5a57ff1","originalAuthorName":"V.Lupinc"},{"authorName":"M.Maldini","id":"518313b0-a570-42f6-9c9a-ccab5ea71309","originalAuthorName":"M.Maldini"}],"doi":"10.3321/j.issn:0412-1961.2001.08.001","fpage":"785","id":"72ec50de-730a-40fe-8a41-dd3ddf96bdef","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"f9d996eb-007f-459b-be73-c6ee5da384f7","keyword":"金属间化合物","originalKeyword":"金属间化合物"},{"id":"6773b4a4-2e3a-41b4-8fe0-63b0cb9e1303","keyword":"TiAl","originalKeyword":"TiAl"},{"id":"e19ff695-dbaa-4a83-aeba-687cdcbd1791","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"3ae4d7da-75cd-410c-a86f-e5e0237d1c8c","keyword":"","originalKeyword":"蠕变"}],"language":"zh","publisherId":"jsxb200108001","title":"Ti-47Al-2W-0.5Si合金的高温力学行为和变形机制","volume":"37","year":"2001"},{"abstractinfo":"变过程中,材料内部状态的不断演化,使得材料的行为发生改变。本文提出考虑损伤和硬化影响的律。利用该律讨论了12Cr1MoV钢行为。分析结果表明,c在变过程中始终变化,第二阶段仅仅是c相对稳定的阶段,其相对稳定程度和持续范围与载荷大小有关。在相同寿命分数下,不同应力水平引起的硬化状态也不相同。","authors":[{"authorName":"金尧","id":"0f332bc6-a226-4690-9232-115fd618ee25","originalAuthorName":"金尧"},{"authorName":"孙亚芳","id":"7dacc0f0-fc44-49b0-9724-b7a0ef02da61","originalAuthorName":"孙亚芳"},{"authorName":"孙训方","id":"5cc4333c-cfd4-4706-8705-872db6c1ca9b","originalAuthorName":"孙训方"},{"authorName":"邓勇","id":"fde5f66a-e8f0-4210-9bef-b4ec44d5de3f","originalAuthorName":"邓勇"},{"authorName":"刘洪杰","id":"452bcd70-e05d-40a1-83d2-5659f15458e0","originalAuthorName":"刘洪杰"},{"authorName":"屠勇","id":"b36d6624-1400-4f47-bcb1-ebb0ad040055","originalAuthorName":"屠勇"}],"doi":"10.3969/j.issn.1001-4381.2001.01.013","fpage":"40","id":"cda54ee1-3917-473f-8d89-edada912e8f2","issue":"1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"e6093943-d6b1-4e6e-9eac-508af11769e0","keyword":"","originalKeyword":"蠕变"},{"id":"8cdce77c-4be5-4798-bb51-9b440b8a9296","keyword":"律","originalKeyword":"蠕变律"},{"id":"80d12122-f603-486b-a66b-20944c259721","keyword":"损伤","originalKeyword":"损伤"},{"id":"05e6ad51-1133-40ed-9663-5808d6cdd78b","keyword":"硬化","originalKeyword":"硬化"},{"id":"00cb3a44-ac80-4c1e-88f9-a68ac202f0ee","keyword":"变速率","originalKeyword":"蠕变速率"}],"language":"zh","publisherId":"clgc200101013","title":"金属律及行为研究","volume":"1","year":"2001"},{"abstractinfo":"在常温下对开孔泡沫镍进行了拉伸实验,研究了应力与的关系,探讨了描述泡沫镍所适用的模型.结果表明,开孔泡沫镍的相对密度不变时,变率均随应力的增大而增大.Gibson和Ashby所提出的多孔材料结构模型能够很好地描述常温拉伸实验结果.","authors":[{"authorName":"伍林","id":"df825ab8-d690-4707-887d-7b47b7091f66","originalAuthorName":"伍林"},{"authorName":"张俊彦","id":"544c075d-a327-4111-bc77-7e7ecefdb1c8","originalAuthorName":"张俊彦"},{"authorName":"夏学文","id":"ba0b53de-fa0e-45ea-a415-8886cdbeb322","originalAuthorName":"夏学文"}],"doi":"","fpage":"291","id":"cb179f08-254c-4281-b59f-d1e20f9a9853","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"5ac586bd-fa48-441e-9d65-3eacf7f47bf3","keyword":"泡沫镍","originalKeyword":"泡沫镍"},{"id":"8145b737-75a2-421a-82e6-99709b04cbb0","keyword":"拉伸","originalKeyword":"拉伸蠕变"},{"id":"68d88e41-e42d-4d09-ab40-47f454693d26","keyword":"模型","originalKeyword":"蠕变模型"}],"language":"zh","publisherId":"cldb2010z1085","title":"泡沫镍拉伸实验研究","volume":"24","year":"2010"},{"abstractinfo":"综合了中国科学院金属研究所高温合金和金属间化合物研究组在高温合金研究方面的主要成果:和断裂规律及其机理,-环境交互作用及其机理,阻力模型以及疲劳--环境交互作用规律及其机理.","authors":[{"authorName":"郭建亭","id":"68bf3734-b324-4b3e-9f3b-ced773b03c31","originalAuthorName":"郭建亭"},{"authorName":"袁超","id":"eae32b6c-daee-46d6-84d9-40fafedd5a11","originalAuthorName":"袁超"},{"authorName":"侯介山","id":"6e667ca5-5eb9-4515-81f9-3509b2217934","originalAuthorName":"侯介山"}],"doi":"","fpage":"487","id":"330fe52b-bb47-4077-88ca-3b701e034591","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"09311f97-ef4d-4a5a-bc58-5e7108aa7677","keyword":"高温合金","originalKeyword":"高温合金"},{"id":"2b25f7e3-a5ec-4c1c-9d1d-67df496deef1","keyword":"机理","originalKeyword":"蠕变机理"},{"id":"51a454c5-8ca3-4e6f-90be-1e3be6fe9166","keyword":"阻力模型","originalKeyword":"蠕变阻力模型"},{"id":"af0aecdf-6659-4c63-a85d-a1003a86e145","keyword":"疲劳--环境交互作用","originalKeyword":"疲劳-蠕变-环境交互作用"}],"language":"zh","publisherId":"zgysjsxb201103003","title":"高温合金的及疲劳--环境交互作用规律和机理","volume":"21","year":"2011"},{"abstractinfo":"小冲孔试验技术是获取在役构件变性能的一种新方法,由于它具有接近无损取样的特点,因此受到学术界和工业界的广泛重视.本文简要回顾了小冲孔试验技术的发展及应用,重点介绍了典型小冲孔试验装置的组成及结构,指出了小冲孔试验技术目前存在的问题和广阔的应用前景.","authors":[{"authorName":"陈玉新","id":"eaffb4a0-e619-4ca5-9d1d-5bbdc4f62f8e","originalAuthorName":"陈玉新"},{"authorName":"凌祥","id":"ba9ef43d-21a9-44f8-936a-d85e168cf62c","originalAuthorName":"凌祥"},{"authorName":"涂善东","id":"39f80073-b491-4e67-aa15-f475b23987c4","originalAuthorName":"涂善东"}],"doi":"10.3969/j.issn.1001-0777.2004.04.007","fpage":"18","id":"c863bbd9-cdeb-45b0-a19a-d040d87b2ac5","issue":"4","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"96bc7a33-97f7-46a9-94a5-439f2020a44b","keyword":"小冲孔试验技术","originalKeyword":"小冲孔试验技术"},{"id":"29425932-bd08-4a5c-ad0e-72916beb27b1","keyword":"","originalKeyword":"蠕变"}],"language":"zh","publisherId":"wlcs200404007","title":"小冲孔试验技术","volume":"","year":"2004"},{"abstractinfo":"利用P92钢在595、610、640、670℃的高应力试验条件下的试验数据,得出其Norton应力指数,依据Norton应力指数的大小判定其机理为位错.同时结合1种新的变变形及断裂模型,引入将损伤看作1个内在的阶段变量的损伤容许量系数,根据损伤容许量λ=2.94,判断其变变形和断裂是位错运动控制的.微观组织的观察也表明,后的试样中位错密度大大降低,高密度位错是P92钢持久强度高的原因,伴随着位错密度的下降,P92钢持久强度降低直至断裂.","authors":[{"authorName":"赵强","id":"8c6490fd-b996-402e-9fbb-6d8345e33062","originalAuthorName":"赵强"},{"authorName":"彭先宽","id":"eae5e228-f69c-40ef-b123-eb84972aadcc","originalAuthorName":"彭先宽"},{"authorName":"王然","id":"f75af81c-6550-4e5d-bbd7-5e56ff8ec502","originalAuthorName":"王然"}],"doi":"","fpage":"56","id":"cf4168af-9151-4200-bd68-6d0bc6e0cc67","issue":"2","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"32143b4f-ed05-41d0-992e-7ee7f888d7c1","keyword":"P92钢","originalKeyword":"P92钢"},{"id":"ef4360bd-c0dc-4ba8-904f-0cee0f76f89f","keyword":"Norton应力指数","originalKeyword":"Norton应力指数"},{"id":"9caded37-ed97-49fa-8dde-ae248d1d78c0","keyword":"损伤容许量系数","originalKeyword":"蠕变损伤容许量系数"},{"id":"e971ccfc-3db0-40e3-bd84-ecb3c64678ef","keyword":"机理","originalKeyword":"蠕变机理"}],"language":"zh","publisherId":"gtyjxb201002013","title":"P92钢的损伤容许量系数及断裂机理","volume":"22","year":"2010"}],"totalpage":1157,"totalrecord":11565}