欢迎登录材料期刊网

材料期刊网

高级检索

本文建立了纳米颗粒/制冷剂工质换热性能实验台,对实验系统进行了检验,并首次进行了纳米颗粒TiO2/HFC134a工质水平管内的单相对流换热实验研究,纳米颗粒的浓度为0.01、0.025和0.05 g/L,并与纯质HFC134a的结果相比较.结果发现:TiO2/HFC134a工质的单相对流换热系数降低,且随着纳米颗粒浓度的增大,降低程度增大.分析原因纳米颗粒在换热表面的沉积是造成这一结果的关键因素.

参考文献

[1] S U S Choi .Enhancing Thermal Conductivity of Fluids with Nanoparticles[J].ASME FED Separated and Complex Flow,1995,231(66):99-103.
[2] WANG Kai-Jian;DING Guo-Liang;JIANG Wei-Ting.Nano-scale Thermal Transporting and its Use in Engineering[A].Nanjing:Southeast University,2006:66-75.
[3] LI Peng;WU Xiao-Min;LI Hui.Pool Boiling Heat Transfer Experiments of Refrigerant with Nanoparticle TiO2[A].Beijing:Chinese Institute of Engineering Thermophysics,2006:325-328.
[4] Ki-Jung Park;Dongsoo Jung .Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning[J].Energy and buildings,2007(9):1061-1064.
[5] 雍翰林;毕胜山;史琳.HFC134a/TiO2纳米粒子工质体系应用于冰箱的实验研究[J].化工学报,2006(zk):141-145.
[6] 毕胜山,史琳.纳米颗粒在制冷剂中的分散特性研究[J].工程热物理学报,2007(02):185-188.
[7] Dittus F W;M L;Boelter K .Heat Transfer in Automobile Radiator of the Tube Type[D].University of California,Berkley,1930.
[8] Petukhov B S .Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties[J].Advance in Heat Transfer,1970,6:50-564.
[9] Gnielinski V .New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow[J].International Chemical Engineering,1976,16(02):359-368.
[10] Xuan Y M;Roetzel W .Conceptions for Heat Transfer Correlation of Nanofluid[J].Int J Heat Transfer,2000,43(19):3701-3707.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%