欢迎登录材料期刊网

材料期刊网

高级检索

采用脉冲电沉积法分别制备微晶镍(MC-Ni)、超细晶镍(UFG-Ni)和纳米镍(NC-Ni),其平均晶粒尺寸分别为2 μm、120.7 nm、22.4 nm.室温单向拉伸试验结果表明:3种镍的屈服强度和抗拉强度随晶粒尺寸的减小而增大,与MC-Ni的塑性(11.1%)相比,UFG-Ni的塑性降至7.9%,但均匀应变值却比MC-Ni高,NC-Ni的塑性仅有4.1%.

参考文献

[1] Dalla Torre F;Sp(a)tig P;Sch()aublin R et al.[J].ACTA MATERIALIA,2005,53:2337.
[2] Wang Y M;Ma E;Chen M W .[J].Applied Physics Letters,2002,80:2395.
[3] 谢子令,武晓雷,洪友士.微纳米晶金属的应变率敏感性及应变硬化行为分析[J].固体力学学报,2007(01):43-48.
[4] Xuetao Y;Yu W;Dongbai S;HongyIng Y .Influence of pulse parameters on the microstructure and microhardness of nickel electrodeposits[J].Surface & Coatings Technology,2008(9):1895-1903.
[5] Rashidi AM;Amadeh A .The effect of current density on the grain size of electrodeposited nanocrystalline nickel coatings[J].Surface & Coatings Technology,2008(16):3772-3776.
[6] Ebrahimi F;Bourne G R;Kelly M S et al.[J].Nano-Structured Materials,1999,11(03):343.
[7] Ebrahimi F;Ahmed Z .[J].Materials Characterization,2003,49:373.
[8] 杨善式;尚成嘉;王学敏 et al.[J].金属学报,2003,39(06):579.
[9] Hart E W .[J].Acta Metallurgica,1967,15:351.
[10] Kumar K S;Suresh S;Chisholm M F et al.[J].Acta Materialia,2003,51:387.
[11] Ovid'ko I A .[J].Reviews on Advanced Materials Science,2005,10:89.
[12] Budrovic Z;Van Swygenhoven H;Derlet PM;Van Petegem S;Schmitt B .Plastic deformation with reversible peak broadening in nanocrystalline nickel[J].Science,2004(5668):273-276.
[13] Wang Y M;Cheng S;Wei Q M et al.[J].Scripta Materialia,2004,51:1023.
[14] Van swygenhoven H;Derlet P M;Haanaoui A .[J].Acta Materialia,2004,52:2251.
[15] Shan Z W;Stach E A;Wiezorek J M K et al.[J].Science,2004,305:654.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%