{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在加压密相气力输送实验装置上获得了不同操作条件下煤粉颗粒静电波动信号,并用Hilbert-Huang变换、功率谱进行分析.结果表明:随着表观速度的增加,静电波动信号主峰值的频率增大;静电波动信号希尔伯特-黄变换(Hilbert-Huang)揭示了气固两相流静电信号的非线性和非平稳特征,随气固两相流颗粒相浓度降低和颗粒及表观速度增加,静电波动信号特征尺度由高尺度(低频)向低尺度(高频)转移.多尺度分析有助于认识气固两相流动形态及其转变规律.","authors":[{"authorName":"许传龙","id":"291c25e7-aa48-4957-9949-688dad62b507","originalAuthorName":"许传龙"},{"authorName":"王式民","id":"f84a8169-a0a5-4531-983f-9892682abbc9","originalAuthorName":"王式民"}],"doi":"","fpage":"239","id":"6f2e3c79-6171-441f-8c03-33104d4b002f","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"92475e03-1747-4ec5-ab09-1c5aab7bf2f4","keyword":"颗粒静电","originalKeyword":"颗粒静电"},{"id":"02b96112-0b45-413a-95fb-c97fc14e0d0f","keyword":"静电传感器","originalKeyword":"静电传感器"},{"id":"c551a621-2efa-4c26-a855-98b3713e6875","keyword":"气-固两相流","originalKeyword":"气-固两相流"},{"id":"5cae7d59-6158-4b58-a151-e70fa17ed8c2","keyword":"Hilbert-Huang变换","originalKeyword":"Hilbert-Huang变换"}],"language":"zh","publisherId":"gcrwlxb201102015","title":"密相气力输送颗粒静电波动信号多尺度分析","volume":"32","year":"2011"},{"abstractinfo":"介绍了一种非接触式移动颗粒静电测试方法,并在加压密相气力输送实验装置上对质量浓度在128~230 kg/m3,气体表观速度在6~15 m/s条件下的煤粉颗粒荷电特性进行了实验研究.颗粒平均粒径为35.6μm.实验结果表明:粉体颗粒荷电指示值随着颗粒浓度的增加逐步增大,浓度在150~160 kg/m3之间时达到最大值,随后减小;指示值随着气体表观速度的增加而增大,而后趋于饱和值.","authors":[{"authorName":"许传龙","id":"e067217f-d7f7-4962-8c90-dc3c78d236d8","originalAuthorName":"许传龙"},{"authorName":"杨道业","id":"ed49cc66-54db-4c80-9eb8-cd7e1ef1b806","originalAuthorName":"杨道业"},{"authorName":"汤光华","id":"35f5475a-d809-41b5-b986-47ead2666525","originalAuthorName":"汤光华"},{"authorName":"周宾","id":"828e4778-8e74-4db4-82f2-9fed40485576","originalAuthorName":"周宾"},{"authorName":"王式民","id":"60fab869-7d55-4711-a4cd-0776ef51c409","originalAuthorName":"王式民"}],"doi":"","fpage":"611","id":"db051c60-ff75-4fc3-b15d-c686b55e6204","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e4ffa7d4-9787-4414-8ca6-172effc517df","keyword":"颗粒静电","originalKeyword":"颗粒静电"},{"id":"14544d32-4b0b-4f4a-a655-27b45b1c7d1e","keyword":"静电传感器","originalKeyword":"静电传感器"},{"id":"b4cad909-f53f-4f90-a238-f48df92e1d3d","keyword":"气力输送","originalKeyword":"气力输送"},{"id":"9f5060c4-96e3-4ef9-9786-953aa5c3128b","keyword":"气-固两相流","originalKeyword":"气-固两相流"}],"language":"zh","publisherId":"gcrwlxb200704022","title":"加压密相气力输送煤粉颗粒荷电特性研究","volume":"28","year":"2007"},{"abstractinfo":"在颗粒输气力送过程中,由于颗粒和管道壁面接触产生静电,给工业生产带来了很多问题和安全隐患.目前颗粒形状对静电产生影响的研究十分有限.本文研究颗粒形状因素对静电产生的影响.颗粒粒径2.0~5.0 mm,分别以长方形和半圆形作为摩擦面,沿着倾斜金属平板多次滑行,直接测量获得颗粒滑行产生静电电量.研究发现颗粒面积、长宽比、滑行方向、速度、角度,对静电发生均有明显影响.该研究为工业静电的评估及防护提供了重要的科学依据.","authors":[{"authorName":"姚军","id":"a85e534c-51d1-4e3d-a043-1e60aa4b0f00","originalAuthorName":"姚军"},{"authorName":"周芳","id":"70ec85d2-3cb4-43f4-983d-f5b6ada48949","originalAuthorName":"周芳"},{"authorName":"赵彦琳","id":"f26899b5-b1fc-41fc-9e96-22496534393c","originalAuthorName":"赵彦琳"},{"authorName":"李宁","id":"dee74805-733b-43b1-8a9b-4866154ea840","originalAuthorName":"李宁"}],"doi":"","fpage":"2395","id":"5a3879ad-7381-4991-9560-5d806df58ac1","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"17d930c0-9658-4598-b961-7972fa94ec86","keyword":"颗粒","originalKeyword":"颗粒"},{"id":"3f5531cb-877f-477a-98f0-1e55fa492635","keyword":"形状","originalKeyword":"形状"},{"id":"6333d671-c6e3-428a-bfbe-a0be56d4c1e3","keyword":"大小","originalKeyword":"大小"},{"id":"732deedd-bd9a-45fb-b766-b25ef091e957","keyword":"静电","originalKeyword":"静电"}],"language":"zh","publisherId":"gcrwlxb201511019","title":"长形颗粒静电发生的实验研究","volume":"36","year":"2015"},{"abstractinfo":"对用于气固两相流颗粒速度测量的阵列式静电传感器输出信号进行自相关分析,获得了自相关谱线中渡越时间与颗粒速度的关系,并在重力输送实验台和浓相气力输送装置进行了实验验证,最后分析了采样频率对速度测量结果的影响.理论与实验结果表明:静电信号自相关函数的渡越时间与颗粒速度成线性关系,在合理选择采样频率的前提下可准确获得颗粒流动平均速度.","authors":[{"authorName":"李健","id":"e5d54c34-9756-42e8-a36f-5c7b99aa2c3f","originalAuthorName":"李健"},{"authorName":"许传龙","id":"55fe71bf-6479-46c5-a8b8-f061b5478c8f","originalAuthorName":"许传龙"},{"authorName":"王式民","id":"959cd02d-b356-4869-a596-5ef32413b1e3","originalAuthorName":"王式民"}],"doi":"","fpage":"1343","id":"5565fcd7-3788-4569-b00d-1aed925f02a0","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"b24290d5-65da-4353-891b-222f6d7d33fb","keyword":"阵列式静电传感器","originalKeyword":"阵列式静电传感器"},{"id":"a11d24c2-6ce5-4343-8b77-61f94e59a617","keyword":"自相关","originalKeyword":"自相关"},{"id":"a043ac94-7f07-42d7-a6cc-cea5b6cd5ddb","keyword":"颗粒速度","originalKeyword":"颗粒速度"},{"id":"cbe3b929-6961-4dde-b630-f7d4891459bd","keyword":"气固两相流","originalKeyword":"气固两相流"}],"language":"zh","publisherId":"gcrwlxb201407020","title":"基于阵列式静电传感器的自相关颗粒速度测量","volume":"35","year":"2014"},{"abstractinfo":"通过经典力学及流体力学基本原理,建立轨道模型对气流粉碎/静电分散相复合制备超微粉体中粉碎分散仓内颗粒的运动过程进行了数值模拟研究,揭示了气流粉碎/静电分散过程中粉体颗粒的运动规律.当荷电电压为20 kV,射流速度较低时粉体颗粒流存在准稳态层流流动现象;随着射流速度的提高,粉体颗粒转变为弥散分布,且分散性具有一定程度的提高;当荷电电压增大至60 kV时,仓内粉体颗粒的分散性有了进一步的提高,呈现出较好的均匀分散状态.研究结果表明,增大射流速度和荷电电压能够有效的提高制备过程中粉体颗粒的分散性,且后者效果更为明显.","authors":[{"authorName":"殷鹏飞","id":"d8fec2b6-3599-4d3c-9554-23ee1e053207","originalAuthorName":"殷鹏飞"},{"authorName":"张蓉","id":"64f76284-0587-413e-931d-7425c1e36658","originalAuthorName":"张蓉"},{"authorName":"李银冰","id":"525ff5bc-59fe-494f-a0ff-74c2ffbe87f2","originalAuthorName":"李银冰"},{"authorName":"李宁","id":"95e02bd8-8126-4b9e-bfe4-1c04d7d4f1be","originalAuthorName":"李宁"},{"authorName":"申朵","id":"56ab5eff-a6ca-4809-bc7f-121e3711d868","originalAuthorName":"申朵"},{"authorName":"胡建昌","id":"86b7ccda-78d5-4a2e-a048-0dd7469b0c44","originalAuthorName":"胡建昌"}],"doi":"","fpage":"3052","id":"bc557d93-ec50-4b15-a1b7-91e033cc4aa8","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"364fa219-1d8b-4621-a1d8-0191c970add7","keyword":"超微粉体","originalKeyword":"超微粉体"},{"id":"c77feb60-ce14-4082-8268-776667e162c0","keyword":"运动规律","originalKeyword":"运动规律"},{"id":"72e0d4b8-d3fe-43ce-b9e6-7c3fac8c603a","keyword":"气流粉碎","originalKeyword":"气流粉碎"},{"id":"93e9518d-ff30-4837-93ad-16c9650f1e8e","keyword":"静电分散","originalKeyword":"静电分散"}],"language":"zh","publisherId":"xyjsclygc201412037","title":"气流粉碎/静电分散中粉体颗粒运动规律的数值模拟研究","volume":"43","year":"2014"},{"abstractinfo":"对采用高速旋杯静电喷涂金属漆出现颗粒的问题进行了分析,产生的颗粒主要来自喷涂过程中旋杯上的粘漆;旋杯粘漆与旋杯转速、涂料流量、环境温度、溶剂挥发速率有关,温度越高、旋杯转速越快、喷涂流量越小,溶剂挥发越快,旋杯的粘漆程度越严重,涂膜上出现的颗粒越多,解决旋杯粘漆的关键在于降低涂料的干燥速度.","authors":[{"authorName":"丁帮勇","id":"5647c4cc-3e35-47d5-a2fe-1c3669f3261c","originalAuthorName":"丁帮勇"},{"authorName":"濮国尧","id":"b5a6dc76-b851-416f-bdf6-fd392899589c","originalAuthorName":"濮国尧"},{"authorName":"汪文进","id":"b665e263-e328-431d-a1ec-0dd3aada0cb5","originalAuthorName":"汪文进"},{"authorName":"袁浩","id":"5cb6f35f-28cc-45a0-a1d6-63873d0c2dd2","originalAuthorName":"袁浩"}],"doi":"","fpage":"68","id":"deb80628-84a0-480e-a8aa-712600e5812c","issue":"2","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"dfae4364-a105-447d-9b17-1030eef69a41","keyword":"旋杯","originalKeyword":"旋杯"},{"id":"408bfada-1373-4a95-8a85-637e19d0763c","keyword":"静电喷涂","originalKeyword":"静电喷涂"},{"id":"2acdeab9-6692-4f92-bc8c-e769e69eb4d8","keyword":"金属漆","originalKeyword":"金属漆"},{"id":"b71547b3-34b6-4888-a78f-8c820d9b7ad0","keyword":"颗粒","originalKeyword":"颗粒"}],"language":"zh","publisherId":"tlgy201302018","title":"静电旋杯喷涂金属漆出现颗粒的原因分析","volume":"43","year":"2013"},{"abstractinfo":"电除尘器是电厂尾气处理的主要设备,粉尘在沉积边界层内的电荷输运过程,如电荷的转移、累积和反电晕现象等,对于电除尘器除尘效率有着显著的影响.本文利用Paschen定律定量分析荷电颗粒的放电条件.计算结果表明,在电除尘系统中通过场致荷电方式获得电荷的粉尘颗粒不足以引起颗粒放电,而颗粒 极板接触后发生电荷转移,导致电荷在颗粒表面局部积累会引起放电现象.","authors":[{"authorName":"陈晟","id":"13efb762-aa19-49be-9a8e-dfadd56d0615","originalAuthorName":"陈晟"},{"authorName":"李水清","id":"b9f32cb9-fd85-4322-b300-ad43d76e7996","originalAuthorName":"李水清"},{"authorName":"杨萌萌","id":"2edbbaa1-4194-48c4-b24e-6c11b4736e0c","originalAuthorName":"杨萌萌"},{"authorName":"姚强","id":"88da0fae-ee35-463f-a8ff-b888de27c6c0","originalAuthorName":"姚强"}],"doi":"","fpage":"2216","id":"8f41d9c8-665e-47c2-8949-9701f4b81e43","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"85b7f791-4a7e-47f4-9c00-eaafb019cd6f","keyword":"ESP","originalKeyword":"ESP"},{"id":"b7ed1d9a-57b4-46c7-8505-f579874a3669","keyword":"荷电颗粒","originalKeyword":"荷电颗粒"},{"id":"bd6d790d-3582-4510-b6e0-c7a5381650a9","keyword":"放电","originalKeyword":"放电"},{"id":"9dfd30f9-81d7-4261-818c-7435a80b8d41","keyword":"Paschen曲线","originalKeyword":"Paschen曲线"}],"language":"zh","publisherId":"gcrwlxb201411023","title":"静电除尘器内荷电颗粒放电现象探究","volume":"35","year":"2014"},{"abstractinfo":"分类综述了本征型抗静电涂料和复合型抗静电涂料的研究进展,详细介绍了碳系导电填料、金属导电填料和金属氧化物导电填料对抗静电涂料性能的影响.重点分析了抗静电涂料在雷达罩抗静电和石油罐导静电2个领域的应用现状及其在应用中存在的问题.探讨了抗静电涂料未来的发展方向,指出抗静电涂料的多功能化是未来的发展方向之一.","authors":[{"authorName":"吴连锋","id":"a4e795f0-4356-48c8-be5b-153a79dd7d0b","originalAuthorName":"吴连锋"},{"authorName":"刘艳明","id":"46f0142f-526f-4e20-9656-e76222607bef","originalAuthorName":"刘艳明"},{"authorName":"王贤明","id":"92302586-7a5d-4133-b6e7-37f4fa91a95b","originalAuthorName":"王贤明"},{"authorName":"万丽","id":"a02f5b72-92f3-4233-9722-a92d57e94e26","originalAuthorName":"万丽"},{"authorName":"宁亮","id":"9b568328-c3e0-4713-86c8-022d3dda8ebb","originalAuthorName":"宁亮"},{"authorName":"韩建军","id":"27b05eb1-dae6-415b-a33c-69256fc60bd1","originalAuthorName":"韩建军"},{"authorName":"万众","id":"1a246fd8-7b98-4ed5-98ee-ef04b343c00e","originalAuthorName":"万众"},{"authorName":"卢敏","id":"56aab591-a6a7-4567-9608-e6cb292be687","originalAuthorName":"卢敏"}],"doi":"","fpage":"75","id":"0468fb98-1ff9-43ae-9847-a766e6bffdb8","issue":"8","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"0f0ca813-8cad-4681-811c-6c916100568a","keyword":"抗静电涂料","originalKeyword":"抗静电涂料"},{"id":"b4c0dde4-191c-4874-a9b8-b765257a63ce","keyword":"抗静电剂","originalKeyword":"抗静电剂"},{"id":"cfe61450-da34-47d7-a5c7-f3a4f348183f","keyword":"导电填料","originalKeyword":"导电填料"},{"id":"fab34924-1da3-4ec8-bc37-c33bbef49171","keyword":"石油罐","originalKeyword":"石油罐"},{"id":"36671e96-d4af-429c-bd25-a2c6a39b0a0a","keyword":"雷达罩","originalKeyword":"雷达罩"}],"language":"zh","publisherId":"tlgy201608015","title":"抗静电涂料研究概述","volume":"46","year":"2016"},{"abstractinfo":"传统的导静电涂层多是添加颗粒状导电体,其导静电效率较低.为进一步提高导静电涂层的导静电效果和综合性能,研究制备了环氧基纳米铜纤维复合导静电涂层,并采用扫描电镜、能谱、电化学等手段对该涂层的性能进行表征.结果表明:添加7%纳米铜纤维的环氧涂层具有较致密的结构和较好的耐蚀性.","authors":[{"authorName":"郭超","id":"ddf55299-fec8-497e-87a5-c1083103f928","originalAuthorName":"郭超"},{"authorName":"徐海涛","id":"85ffb073-4bff-41c6-bf2a-3a2968481ecc","originalAuthorName":"徐海涛"},{"authorName":"李世超","id":"99036442-8c1c-45ff-b601-80786a268744","originalAuthorName":"李世超"},{"authorName":"刘佳","id":"d2d82f43-07e0-4a29-afa6-1b6c778f15dc","originalAuthorName":"刘佳"},{"authorName":"丁浩","id":"0844bae9-49d5-4819-8644-21fabc3e972f","originalAuthorName":"丁浩"}],"doi":"","fpage":"28","id":"47f75df5-4833-4d42-b735-89c89cca7cd1","issue":"7","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"61c1d309-8ec1-45cc-8c66-dffdb940733c","keyword":"纳米铜纤维","originalKeyword":"纳米铜纤维"},{"id":"93774856-c474-4066-897f-76fb91caa32e","keyword":"导静电涂层","originalKeyword":"导静电涂层"},{"id":"dc6af625-3a9c-401d-bfdd-0859784eac1d","keyword":"储罐","originalKeyword":"储罐"}],"language":"zh","publisherId":"tlgy201507006","title":"纳米铜纤维复合导静电涂层的研究","volume":"45","year":"2015"},{"abstractinfo":"简述了抗静电粉末涂料的制备机理及铝粉、氧化镁、二氧化钛和抗静电助剂添加量对涂料性能的影响,并简述其应用.","authors":[{"authorName":"夏振华","id":"f2a4b6f4-b4ba-4213-b1c2-79c2e6c87e52","originalAuthorName":"夏振华"},{"authorName":"阚卫东","id":"03949a82-bc02-4bf4-8016-0d17333c5ec7","originalAuthorName":"阚卫东"},{"authorName":"鲍来剑","id":"d2540cc7-0ab8-4b18-bec1-3ae1492a2dd5","originalAuthorName":"鲍来剑"}],"doi":"10.3969/j.issn.0253-4312.2004.11.016","fpage":"46","id":"b1722814-bf39-48ef-bf0c-bffe8b1cd26f","issue":"11","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"ce0d453e-064b-4f7b-a861-c63b9d8bd269","keyword":"粉末涂料","originalKeyword":"粉末涂料"},{"id":"ba0083be-0817-429b-867c-cfc774796340","keyword":"抗静电","originalKeyword":"抗静电"},{"id":"786b6057-8559-4f1a-9621-12f82123ddb2","keyword":"制备","originalKeyword":"制备"},{"id":"62232e1e-86be-4f7d-a36d-b1439733e314","keyword":"机理","originalKeyword":"机理"},{"id":"82182e2e-f192-41db-96cc-ac53f37f26bb","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"tlgy200411016","title":"抗静电粉末涂料的制备","volume":"34","year":"2004"}],"totalpage":1614,"totalrecord":16135}