材料热处理学报, 2011, 32(9): 146-150.
电沉积制备镁合金HA涂层的组织及其可降解性能
崔彤 1, , 低温燃烧-热处理法合成了YAG:Ce3+光致发光荧光粉.利用XRD、SEM、粒度分析仪和荧光分光光度计,研究了制备工艺条件对样品的物相组成、激发光谱、发射光谱以及相对发光亮度的影响.结果表明,公式Y3-xCexAl5O12中的x值取0.06,点火温度为650℃,燃烧产物经CO还原气氛1050℃保温2.5 h煅烧处理,得到发光强度较大的单一YAG相YAG:Ce3+荧光粉.该荧光粉可被波长为468 nm的蓝光激发,发射波长为525 nm的黄光.","authors":[{"authorName":"武秀兰","id":"2d69add6-1abe-4427-8deb-fbbd4e34a288","originalAuthorName":"武秀兰"},{"authorName":"任强","id":"1593eac1-7edb-45f5-be8a-2d58019ce58f","originalAuthorName":"任强"},{"authorName":"何选盟","id":"26cc9022-e2c7-401d-95bb-49c7d4573df3","originalAuthorName":"何选盟"}],"doi":"","fpage":"69","id":"31e08e12-78c3-4b4c-beed-c8c4d27bee05","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"e382a58a-22a4-482c-841b-59d4338bd8ab","keyword":"低温燃烧","originalKeyword":"低温燃烧"},{"id":"30c3f4c1-7c36-4ba4-9dc0-886bcf63308b","keyword":"YAG:Ce3+","originalKeyword":"YAG:Ce3+"},{"id":"12ffe2e3-b7bd-4bef-9ddf-00372b5ac29e","keyword":"激发光谱","originalKeyword":"激发光谱"},{"id":"8e0e9833-bb9f-4f6a-9f78-cb5343e90666","keyword":"发射光谱","originalKeyword":"发射光谱"}],"language":"zh","publisherId":"xyjsclygc2007z1021","title":"低温自蔓延燃烧法制备YAG:Ce3+荧光粉的研究","volume":"36","year":"2007"},{"abstractinfo":"用柠檬酸及乙二醇作络合剂和燃料,硝酸作氧化剂,氨水作pH值调节搅和燃烧助剂,通过低温燃烧法合成了固体电解质SrCe0.95Y0.05O3-δ(SCY)纳米陶瓷粉.用X-ray衍射(XRD),热分析(TA),扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析方法对合成的粉体进行了表征.并初步考察了粉体的烧结性能.结果表明,低温燃烧法可以在短时间内,通过溶胶燃烧一步合成粒度小于25nm,分布均匀的SCY纳米粉,粉体具有良好的烧结性能.","authors":[{"authorName":"孟波","id":"8780fe2e-c16c-47e8-ab72-2f3ae6b465d4","originalAuthorName":"孟波"},{"authorName":"谭小耀","id":"1279fd5c-584b-4bc1-88b4-101526bbfa2e","originalAuthorName":"谭小耀"},{"authorName":"杨乃涛","id":"89042f3a-3470-4a68-9a85-ae9bca717635","originalAuthorName":"杨乃涛"},{"authorName":"张宝砚","id":"b8e0c583-42b8-42e6-b744-ab964965cf67","originalAuthorName":"张宝砚"}],"doi":"10.3969/j.issn.1001-4381.2005.06.009","fpage":"31","id":"92c6e604-0b91-4cc2-9d9a-881a99d58175","issue":"6","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"99cfe461-ebe8-4c57-95a7-029b05f4b47d","keyword":"固体电解质","originalKeyword":"固体电解质"},{"id":"455491e4-f255-4402-9891-ee629ec22303","keyword":"SrCe0.95Y0.05O3-δ","originalKeyword":"SrCe0.95Y0.05O3-δ"},{"id":"685536c8-ad25-433f-9b18-06308dd37b8f","keyword":"纳米陶瓷粉","originalKeyword":"纳米陶瓷粉"},{"id":"4d2393ab-afbc-416a-b5ed-18a077c00669","keyword":"低温燃烧","originalKeyword":"低温燃烧"}],"language":"zh","publisherId":"clgc200506009","title":"SrCe0.95Y0.05O3-δ固体电解质纳米陶瓷粉的低温燃烧合成和表征","volume":"","year":"2005"},{"abstractinfo":"利用柠檬酸做还原剂,硝酸盐做氧化剂,采用低温燃烧合成工艺制备纳米尺寸的Ce08Y0.2O1.9电解质粉体,用XRD、IR、TEM和SEM研究产物的微观结构和烧结性能.XRD、TEM和IR光谱研究表明利用低温燃烧合成工艺直接获得了单一的纳米Ce0.8Y02O1.9固溶体,SEM分析表明电解质粉体具有很好的烧结活性.利用交流阻抗谱在400~800℃温度范围内测量了电解质的电化学性能,结果表明,800℃时氧离子电导率为0.058 S/cm,活化能为0.73 eV.采用低温燃烧合成工艺有利于降低电解质的烧结温度,改善电解质的性能.","authors":[{"authorName":"徐红梅","id":"9cb5eada-8e39-4100-bd7b-e45b0c29bc73","originalAuthorName":"徐红梅"},{"authorName":"严红革","id":"8996ac74-4f40-4e41-8bb9-892524c5bee8","originalAuthorName":"严红革"},{"authorName":"陈振华","id":"f5f65335-c4ca-449a-8d6f-489a4535e20e","originalAuthorName":"陈振华"}],"doi":"","fpage":"909","id":"bb8c1975-5ceb-42dd-8e3b-894c67c3238e","issue":"5","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"4e762229-c083-4618-a8d7-e6e440f1a24e","keyword":"Ce0.8Y02O1.9","originalKeyword":"Ce0.8Y02O1.9"},{"id":"88ba2d26-68d3-4af3-a5da-595d860b7798","keyword":"低温燃烧","originalKeyword":"低温燃烧"},{"id":"ff460ad9-667f-448a-8ade-1c534fccde8b","keyword":"固体电解质","originalKeyword":"固体电解质"},{"id":"aeebfa8c-2310-48ea-92a0-cdb563134357","keyword":"氧离子电导率","originalKeyword":"氧离子电导率"}],"language":"zh","publisherId":"zgysjsxb200605028","title":"Ce0.8Y0.2O1.9固体电解质的低温燃烧合成及性能","volume":"16","year":"2006"},{"abstractinfo":"以尿素、甘氨酸和淀粉为燃烧剂,用低温燃烧法合成了 MgAl2O4 纳米粉体,并研究硝酸铵(氧化剂)外加量对燃烧过程、粉体特性及烧结活性的影响,分别用 SEM、XRD 对 MgAl2O4 粉体的显微结构和物相组成进行了表征.实验结果表明:随着前驱体中硝酸铵加入量的增大,燃烧方式从无焰燃烧转变为有焰燃烧,且有焰燃烧时间显著增加,燃烧产物的烧失量大幅度减小,MgAl2O4 纳米晶的粒径明显增大,而粉体的烧结活性则先升高后降低.当硝酸铵和(硝酸铝+硝酸镁)的物质的量比为0.04:0.15时,用低温燃烧法合成的 MgAl2O4 粉体的烧结活性较高,制备的陶瓷材料的相对密度达到了98%.","authors":[{"authorName":"白佳海","id":"147f3791-9083-4586-b1f5-5abfe1668e76","originalAuthorName":"白佳海"},{"authorName":"刘俊成","id":"7dab7760-72c4-4e7a-b524-30569c0e9b48","originalAuthorName":"刘俊成"}],"doi":"","fpage":"224","id":"3ef6e983-8108-46c6-85f8-863fa4692ffd","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"9fb219d6-f17a-43f4-a5e1-d0ec0a08f39c","keyword":"低温燃烧","originalKeyword":"低温燃烧"},{"id":"99c48402-9f48-42fb-af3c-ff24a325cdd3","keyword":"MgAl2O4","originalKeyword":"MgAl2O4"},{"id":"16619b0e-60c5-423c-bc01-370c7afe6e10","keyword":"烧结活性","originalKeyword":"烧结活性"}],"language":"zh","publisherId":"rgjtxb98201101043","title":"MgAl2O4粉体的低温燃烧合成与烧结性能","volume":"40","year":"2011"},{"abstractinfo":"以Ce(NO_3)_3·6H_2O和Pr_6O_(11)为主要原料,C_6H_8O_7为燃烧剂,采用低温燃烧法合成了Ce_(1-x)Pr_xO_2(x=0~0.15)系列纳米晶红色颜料.用激光Raman光谱、XPS及色度测试等手段对样品的氧空位浓度、Pr、Ce离子在固溶体中的价态以及样品的红度和色饱和度进行分析.结果表明:随着Pr掺杂量的增加,固溶体的氧空位浓度一致增大;Ce_(1-x)Pr_xO_2固溶体中Ce的价态为+4价,Pr离子以+3价的形式存在;样品的红度、色饱和度随Pr含量的增加呈先增后减趋势,当x=0.05时有最佳的呈色性能.","authors":[{"authorName":"朱振峰","id":"a5832888-4ac3-41e8-b69f-d8b4bcaa7a87","originalAuthorName":"朱振峰"},{"authorName":"胡俊滔","id":"f9001a65-8b5a-4b1e-a88f-901238934390","originalAuthorName":"胡俊滔"},{"authorName":"王宝利","id":"509bda89-8966-49b7-8c07-3bf6847acb1d","originalAuthorName":"王宝利"},{"authorName":"李军奇","id":"e3ad163a-0991-40f3-b2a0-de23b1a886fc","originalAuthorName":"李军奇"}],"doi":"","fpage":"38","id":"30fb8dd7-b637-40ab-9bfa-ea86b3f325da","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"5e68db2b-24d0-4288-a29b-3774ad34d15e","keyword":"Ce_(1-x)Pr_xO_2固溶体","originalKeyword":"Ce_(1-x)Pr_xO_2固溶体"},{"id":"3a92bbb2-011f-482d-bc5c-27a07e29fffa","keyword":"低温燃烧","originalKeyword":"低温燃烧"},{"id":"7a4ad98e-a681-4a6f-b709-15dd0d6c5a9f","keyword":"呈色性能","originalKeyword":"呈色性能"}],"language":"zh","publisherId":"xyjsclygc2009z2011","title":"Ce_(1-x)Pr_xO_2固溶体的低温燃烧合成及表征","volume":"38","year":"2009"},{"abstractinfo":"本文通过不同比例的汽油与柴油混合组成宽馏分燃料,在一台单缸试验发动机上进行了燃料组分和喷油压力对低温燃烧影响的试验研究.研究结果表明,在燃烧放热重心(CA50)控制相同的条件下,随着汽油比例升高,燃烧放热速率增大,燃烧持续期缩短,缸内最大压力升高率和爆发压力升高,碳烟排放降低,但NOx排放增大,并且由于低汽油比例的宽馏分燃料(G70)可以采用更大的EGR率,可以实现更低的NOx排放.但燃料组分对热效率的影响较小.提高喷油压力可有效降低宽馏分燃料soot排放,但过高的喷油压力对降低soot排放的作用减小;提高喷油压力使NOx排放升高,但随着EGR率升高,喷油压力对NOx排放的作用减小.因此对于不同组分的宽馏分燃料存在一个最佳的喷油压力,随着汽油比例升高,最佳喷油压力降低.","authors":[{"authorName":"杨彬彬","id":"d3118661-5707-45bb-b305-f715d0ce5c9a","originalAuthorName":"杨彬彬"},{"authorName":"尧命发","id":"af9ba0f3-b513-4d02-a781-42536d21aee3","originalAuthorName":"尧命发"},{"authorName":"郑尊清","id":"6c0a45f4-e1d0-408f-9c6e-3e598ff34ccf","originalAuthorName":"郑尊清"},{"authorName":"李善举","id":"6b74d1db-611e-4900-99b2-30cdfbe4a29d","originalAuthorName":"李善举"}],"doi":"","fpage":"1174","id":"a3df3fa1-c79c-424a-98de-b1f3625cc849","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9874f5f6-7470-4f27-ac60-ae42488678d7","keyword":"宽馏分燃料","originalKeyword":"宽馏分燃料"},{"id":"ca81ee28-3146-4ddc-ba86-7699ff608585","keyword":"低温燃烧","originalKeyword":"低温燃烧"},{"id":"e99d413a-d7f0-4d75-bf69-3f66f6ac793f","keyword":"汽油","originalKeyword":"汽油"},{"id":"c70931f9-86a0-4e46-ae73-8221425e766e","keyword":"柴油","originalKeyword":"柴油"}],"language":"zh","publisherId":"gcrwlxb201306041","title":"燃料组分和喷油压力对宽馏分燃料燃烧与排放影响的试验研究","volume":"34","year":"2013"},{"abstractinfo":"采用低温燃烧法合成掺Zr的新型高温质子导体Ba(Ce0.8Zr0.2)0.9Y0.1O3-δ陶瓷粉体.运用X射线衍射仪、扫描电子显微镜以及激光粒度仪分别对粉体的晶型、微观形貌和粒度分布进行分析.通过控制柠檬酸用量与金属离子摩尔总量的比,直接制备出具有斜方晶钙钛矿结构的纯Ba(Ce0.8Zr0.2)0.9Y0.1O3-δ超细粉体,且粉体粒度分布均匀,平均粒径为5.55μm.粉体烧结性能实验结果表明,粉体在1 200℃发生烧结,在1 300℃下烧结致密,相对密度达到94.32%.","authors":[{"authorName":"庞兆宝","id":"d27d8b9c-d9fc-4f46-95da-a66a20457911","originalAuthorName":"庞兆宝"},{"authorName":"孟波","id":"b557d7c5-eb8d-4026-8407-00526a45d194","originalAuthorName":"孟波"},{"authorName":"谭小耀","id":"f9b81128-d925-4ed6-b38e-6e2d7d702a0c","originalAuthorName":"谭小耀"}],"doi":"","fpage":"858","id":"58bc2dba-ce6b-4d29-a697-52f6aed742a0","issue":"5","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"d3e28893-dea8-47d0-88ef-911002ab94a6","keyword":"高温质子导体","originalKeyword":"高温质子导体"},{"id":"202f2b8f-d5d3-4019-b12e-d6d1e6c40282","keyword":"Ba(Ce0.8Zr0.2)0.9Y0.1O3-δ陶瓷粉体","originalKeyword":"Ba(Ce0.8Zr0.2)0.9Y0.1O3-δ陶瓷粉体"},{"id":"cf2df50d-7f06-43f2-9255-be03c09f37f9","keyword":"低温燃烧","originalKeyword":"低温燃烧"},{"id":"2aba4fc4-0724-49fc-974f-917bd33fc7fa","keyword":"钙钛矿","originalKeyword":"钙钛矿"}],"language":"zh","publisherId":"zgysjsxb200605019","title":"高温质子导体Ba(Ce0.8Zr0.2)0.9Y0.1O3-δ的合成与性能","volume":"16","year":"2006"},{"abstractinfo":"采用基于Pechini法的低温燃烧工艺制备了SrCe0.95Y0.05O3-x(SCY)前驱物.前驱物在900℃经0.5 h的煅烧处理即可得到纯的粒度在7~25 nm范围内的SrCe0.95Y0.05O3-x固体电解质纳米粉.将煅烧的粉体在18 MPa压力下压成片状的素坯,在900~1 500℃的温度范围内于空气中烧结索坯10 h.用X射线衍射(XRD)表征煅烧粉体的晶体结构,用扫描电镜(SEM)和透射电镜(TEM)表征了煅烧粉体和烧结体的形貌和粒度,采用阿基米德法测量了烧结体的密度.结果表明:温度达到1 000℃时,烧结体的径向收缩率和密度随着温度的升高而显著增加;温度达1 300℃时烧结体的径向收缩率和密度趋于恒定,得到相对密度高于96%、平均粒径约为3.68 μm的SrCe095Y0.05O3-x固体电解质陶瓷体.","authors":[{"authorName":"孟波","id":"1bb5cc80-62c0-47e3-949e-098a0bf2991e","originalAuthorName":"孟波"},{"authorName":"谭小耀","id":"70dace93-53d3-4a6b-ba4b-4655d12fa55d","originalAuthorName":"谭小耀"},{"authorName":"杨乃涛","id":"9a7e6dff-5c8c-4776-afbd-25462362092c","originalAuthorName":"杨乃涛"},{"authorName":"张宝砚","id":"9e071713-b8f0-4dda-9721-63e32904ad4f","originalAuthorName":"张宝砚"}],"doi":"","fpage":"358","id":"12e2bc5d-22b0-4ca6-9df2-009ffda9ee1c","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"0ef6d634-3741-44fa-8478-7dded40c4ddc","keyword":"固体电解质","originalKeyword":"固体电解质"},{"id":"162e6126-d9c6-4f0c-87f8-8400434bc9ea","keyword":"SrCe0.95Y0.05O3-x","originalKeyword":"SrCe0.95Y0.05O3-x"},{"id":"80a939b0-0edf-4374-994e-f06567fde178","keyword":"纳米陶瓷粉","originalKeyword":"纳米陶瓷粉"},{"id":"595c816d-c1ae-4e77-9e59-44e1994532ef","keyword":"烧结","originalKeyword":"烧结"},{"id":"3bb9d9b6-6f91-47cd-af13-e32c15a63efa","keyword":"低温燃烧","originalKeyword":"低温燃烧"}],"language":"zh","publisherId":"zgysjsxb200503006","title":"纳米SrCe0.95Y0.05O3-x陶瓷粉的制备与烧结","volume":"15","year":"2005"},{"abstractinfo":"基于课题组自主研发的高碳烃燃烧机理自动生成程序ReaxGen,构建了正庚烷低温燃烧详细机理(642个物种,2220步反应).分别采用物质产率分析和反应路径流量分析方法简化该详细机理,得到半详细机理(510个物种,1472步反应)和骨架机理(209个物种,770步反应).对正庚烷的点火延时,层流火焰速度以及主要物种浓度曲线的模拟结果表明这些机理的模拟精度较高.在工程计算流体力学仿真设计中具有良好的应用前景.分析了正庚烷点火延时敏感度,考查了机理中关键反应.","authors":[{"authorName":"郭俊江","id":"20197c6f-820f-4fe4-9ba4-72cfd05799e1","originalAuthorName":"郭俊江"},{"authorName":"李树豪","id":"8f194028-c42a-474b-b2c4-09b428852c4c","originalAuthorName":"李树豪"},{"authorName":"谈宁馨","id":"f24abf64-ff21-4d87-a025-af4689c51467","originalAuthorName":"谈宁馨"},{"authorName":"李象远","id":"044db30f-0345-4f61-ab06-d17824c7c1b2","originalAuthorName":"李象远"}],"doi":"","fpage":"2298","id":"28232568-40fc-4d5c-8ec8-2679253526c6","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"87de376c-4f10-4a94-84e5-fa8774f02d13","keyword":"正庚烷","originalKeyword":"正庚烷"},{"id":"f7087aa8-a23c-4701-b589-10d45a162401","keyword":"低温燃烧机理","originalKeyword":"低温燃烧机理"},{"id":"6ce06f63-6090-42ee-b648-e53c2358f412","keyword":"机理简化","originalKeyword":"机理简化"},{"id":"0f13516d-4ed8-40b3-996e-b8abfa74b500","keyword":"动力学模拟","originalKeyword":"动力学模拟"}],"language":"zh","publisherId":"gcrwlxb201411041","title":"正庚烷低温燃烧机理构建","volume":"35","year":"2014"},{"abstractinfo":"以硝酸铝、硝酸镁和硅酸为原料,尿素为燃料,硝酸铵为燃烧助剂,低温燃烧合成了MgO-Al_2O_3-SiO_2(MAS)玻璃粉.用DTA、XRD、TMA、SEM等研究了其析晶过程、烧结特性和介电性能.结果表明:该玻璃粉可在低于1000 ℃的温度下烧结;烧结过程中首先析出μ堇青石,然后转变成μ-堇青石;950和1000 ℃烧结的堇青石基微晶玻璃具有低的介电常数(4.00~4.96, 1 MHz)和介质损耗(约0.003, 1 MHz),高的烧结密度(>理论密度的98%),可用于电子封装领域.","authors":[{"authorName":"何英","id":"aa12678a-e1f9-46b8-b922-875345b3e84e","originalAuthorName":"何英"},{"authorName":"周和平","id":"d8871307-6cf5-4ca6-a806-867e4fb8e693","originalAuthorName":"周和平"},{"authorName":"黄兆龙","id":"f33c58e5-2a4c-4e0c-a3bd-fa0801e4691c","originalAuthorName":"黄兆龙"},{"authorName":"王寒风","id":"d9e98aad-fe8a-49fa-bede-a29394f05607","originalAuthorName":"王寒风"},{"authorName":"翟凤瑞","id":"6ba7ece8-49fa-4ef3-a723-816d0162d269","originalAuthorName":"翟凤瑞"},{"authorName":"郭俊明","id":"5854aff4-341f-40c8-a783-4e63c63b0e9f","originalAuthorName":"郭俊明"}],"doi":"","fpage":"63","id":"bde1356d-fa7a-485f-8185-471e1916f150","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"73c42331-5e3c-4330-8a6b-dfd45acc85b9","keyword":"低温燃烧合成","originalKeyword":"低温燃烧合成"},{"id":"b9d46180-0366-41c6-90bd-9f31982fc8fe","keyword":"堇青石","originalKeyword":"堇青石"},{"id":"dc1412f5-1e8a-4687-ae0c-4d8f3bde755d","keyword":"析晶过程","originalKeyword":"析晶过程"},{"id":"07c9b547-1e90-41f0-8f3e-0a8a8307e47a","keyword":"烧结特性","originalKeyword":"烧结特性"},{"id":"4245bb94-6262-4dba-bed6-fa3b22c5f6aa","keyword":"介电性能","originalKeyword":"介电性能"}],"language":"zh","publisherId":"xyjsclygc2009z2018","title":"低温燃烧合成堇青石粉及其性能研究","volume":"38","year":"2009"}],"totalpage":1022,"totalrecord":10214}