{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文采用金属有机盐沉积(MOD)方法,在钇稳定氧化锆(YSZ)单晶上依次制备了CeO2过渡层和YBCO超导层,测得其Tc,onset值为90.5 K,Jc值为1.3 MA/cm2.在沉积YBa2Cu3O7-x(YBCO)过程中发现薄膜中生成了BaCeO3相,继而对该相的生成条件及其对YBCO性能的影响进行了研究.结果表明BaCeO3是在YBCO相生成之后,CeO2与YBCO反应生成的,且以MOD方法制备的YBCO薄膜时难以避免BaCeO3相的产生.","authors":[{"authorName":"吕昭","id":"36c6c907-1144-4b75-9620-d8798e5b198f","originalAuthorName":"吕昭"},{"authorName":"刘敏","id":"77b070d9-0008-4252-b77d-2dec0e1fd436","originalAuthorName":"刘敏"},{"authorName":"叶帅","id":"648be68c-ff7b-44e2-abb6-90738a1d27cb","originalAuthorName":"叶帅"},{"authorName":"吴紫平","id":"2123eedd-5734-44eb-978e-b471051f8c39","originalAuthorName":"吴紫平"},{"authorName":"徐燕","id":"aa736c1d-5b21-4251-b7d0-e7ff1c160533","originalAuthorName":"徐燕"},{"authorName":"索红莉","id":"79b2125e-3b30-463e-ae9a-25c4397b3b5e","originalAuthorName":"索红莉"}],"doi":"","fpage":"1555","id":"df307ecd-7f93-4301-973f-faa1af86ae59","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"32eaf010-148c-4ce6-b918-8c77041a0b74","keyword":"超导薄膜","originalKeyword":"超导薄膜"},{"id":"fc90eaac-dc4c-4458-b4b2-df4a18de1eb3","keyword":"前驱液","originalKeyword":"前驱液"},{"id":"bd508a90-0649-4fa8-a640-275af72c99af","keyword":"YBCO","originalKeyword":"YBCO"},{"id":"ec158c01-c67f-4682-ad14-56567b97dcd6","keyword":"MOD","originalKeyword":"MOD"},{"id":"dd35950a-77c4-4fd3-8e61-3785239b5460","keyword":"BaCeO3","originalKeyword":"BaCeO3"}],"language":"zh","publisherId":"rgjtxb98201006042","title":"MOD法YBCO超导薄膜制备中BaCeO3的形成","volume":"39","year":"2010"},{"abstractinfo":"采用一步法合成新型离子液聚合物,并以聚合物作为炭材料的前驱体。这种新型离子液聚合物的特征包括:聚合无需添加引发剂,聚合引入的阴离子能够控制材料的微孔大小。以含Cl-的离子液聚合物为前驱体合成的炭材料具有较小的比表面积(47評/g),而以含较大(三氟甲基磺酰基)亚胺基阴离子的离子液聚合物为前驱体合成的炭材料具有较大的比表面积(595評/g)。含二氰胺阴离子的离子液聚合物为前驱体合成的炭材料的比表面积为30評/g。","authors":[{"authorName":"廖晨","id":"25fad04f-8cb7-4004-837c-f50b011cf59a","originalAuthorName":"廖晨"},{"authorName":"刘睿","id":"ebddb353-01f9-4b79-8b66-bb1598df1146","originalAuthorName":"刘睿"},{"authorName":"侯希森","id":"cc6c3031-ee9d-4761-bfd1-bad496c580a4","originalAuthorName":"侯希森"},{"authorName":"孙晓光","id":"9f2d8de5-47b2-493c-8863-a9fce50ae3df","originalAuthorName":"孙晓光"},{"authorName":"戴胜","id":"deb6cf86-17bd-4910-b02d-0247e579c140","originalAuthorName":"戴胜"}],"doi":"10.1016/S1872-5805(14)60127-X","fpage":"78","id":"08ce5fd1-4423-4405-a421-6ce77c4b2a24","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"0d00e2e3-b058-48a5-86a6-61497e265182","keyword":"离子液聚合物","originalKeyword":"离子液聚合物"},{"id":"4ff5780e-6339-4b5c-8a86-b28a58c61512","keyword":"炭前驱体","originalKeyword":"炭前驱体"},{"id":"1bcf5863-2632-45db-a2e2-e91f255ada42","keyword":"多孔","originalKeyword":"多孔"}],"language":"zh","publisherId":"xxtcl201401014","title":"作为炭材料前驱体的离子液聚合物的简易合成","volume":"","year":"2014"},{"abstractinfo":"传统全三氟乙酸前驱液对涂敷环境湿度、低温预分解过程中的升温速率和水汽分压等因素具有敏感性,采用改进型前驱液可以降低其敏感性,从而有利于涂层导体的连续制备.我们提出的改进型前驱液中,三氟乙酸钇、三氟乙酸钡和苯甲酸铜是前驱体,甲醇和丙酸的为溶剂.采用化学溶液法在铝酸镧单晶衬底上制备YBCO,低温分解阶段以1~5℃/min快速升温,可以获得低温后的前驱膜光滑完整,无裂纹.通过X衍射分析和扫描电镜分析了薄膜的织构和表面微结构,四引线法测试薄膜超导电性.采用改进型前驱液制备的薄膜超导转变温度(T_c)为90K,在77K、自场下临界电流密度(J_c)为1MA/cm~2.","authors":[{"authorName":"金利华","id":"51cebf3b-60e6-4ad3-9677-b90752c22076","originalAuthorName":"金利华"},{"authorName":"张云","id":"d3e8705a-e32f-4a78-a189-c82697921f5d","originalAuthorName":"张云"},{"authorName":"于泽铭","id":"259d31b2-2b30-41f5-b46d-ca937814ebdd","originalAuthorName":"于泽铭"},{"authorName":"王耀","id":"d50474c1-8486-4a2f-8875-cbdb8edf282b","originalAuthorName":"王耀"},{"authorName":"李成山","id":"3fe31c4d-50fa-4b70-b24f-cacf0e541709","originalAuthorName":"李成山"},{"authorName":"闫果","id":"44451b54-e9a4-44b6-a371-6e6ff47b5649","originalAuthorName":"闫果"},{"authorName":"卢亚锋","id":"0d9f7fa8-909a-472c-8cac-a062adbf2c64","originalAuthorName":"卢亚锋"}],"doi":"","fpage":"38","id":"599c460a-4f35-48b6-b770-7913b5eba069","issue":"1","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"c82c6fe9-78a9-4975-99fb-9798b38b5622","keyword":"涂层导体","originalKeyword":"涂层导体"},{"id":"f9413b44-6af8-464d-8e12-f5633a61d46e","keyword":"化学溶液法沉积","originalKeyword":"化学溶液法沉积"},{"id":"65906691-6dac-4df9-ae80-795cfb975b26","keyword":"快速制备","originalKeyword":"快速制备"},{"id":"21e56b22-706f-4118-bf8e-28d416b2a60d","keyword":"苯甲酸铜","originalKeyword":"苯甲酸铜"}],"language":"zh","publisherId":"dwwlxb201001008","title":"改进型前驱液对化学溶液法制备YBCO薄膜的影响","volume":"32","year":"2010"},{"abstractinfo":"以铝粉、盐酸、醋酸锆和氧氯化锆为原料,聚乙烯醇(PVA)为纺丝助剂,采用溶胶-凝胶法制备了氧化铝/氧化锆前驱体纤维纺丝液,借助高速离心甩丝机、纳米粒度仪、旋转流变仪等仪器设备,研究了原料配比、浓缩温度、含水率、PVA添加量和种类对纺丝液稳定性、流变性和纺丝性的影响机制.结果表明,按m(氧氯化锆)∶m(醋酸锆)=(0.5~0.9)∶1配制成锆溶液,按照n(铝粉)∶n(盐酸)∶n(蒸馏水)=2∶1∶20配制成铝溶胶,两者按m(氧化锆)∶m(氧化铝)=1∶1均匀混合,加入5% PVA (PVA占氧化铝、氧化锆质量总和),在75℃下减压蒸馏4~8 h,室温下陈化24~48 h,可得到粘度在1500~2500 mPa·s,含水率在35%~45%,粒度在20 nm左右,流变性好的氧化铝/氧化锆前驱体纤维纺丝液.采用高速离心甩丝机对纺丝液进行成纤实验,获得直径在4~10μm的氧化铝/氧化锆前驱体纤维,说明该纺丝液具有良好的成纤性能.","authors":[{"authorName":"傅超","id":"db907ceb-043f-4f95-876a-3ca7a133662e","originalAuthorName":"傅超"},{"authorName":"李呈顺","id":"02a26398-8b47-40a3-87ee-aeb0c1efd11a","originalAuthorName":"李呈顺"},{"authorName":"白佳海","id":"898ec3e8-4f1b-44ec-951e-bd2540ace807","originalAuthorName":"白佳海"},{"authorName":"刘俊成","id":"16520f2c-b726-4076-87ac-6e9859920ab2","originalAuthorName":"刘俊成"}],"doi":"10.11896/j.issn.1005-023X.2015.14.015","fpage":"68","id":"8aa342db-d635-4ce4-a269-976a30d14774","issue":"14","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"c96d7883-82ca-4c43-937c-d453a01c2215","keyword":"氧化铝/氧化锆前驱体纤维","originalKeyword":"氧化铝/氧化锆前驱体纤维"},{"id":"e13a3cbc-0388-4a77-8010-72bccc61f58f","keyword":"纺丝液","originalKeyword":"纺丝液"},{"id":"f421c0b4-da4d-4f9a-a45f-63b8c949a680","keyword":"铝溶胶","originalKeyword":"铝溶胶"},{"id":"e5a45f40-7c10-40b8-834c-1296c3b14c3a","keyword":"锆溶胶","originalKeyword":"锆溶胶"},{"id":"39185575-5022-4098-bb00-dbaef4798e90","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"}],"language":"zh","publisherId":"cldb201514015","title":"氧化铝/氧化锆前驱体纤维纺丝液的制备技术研究","volume":"29","year":"2015"},{"abstractinfo":"以聚锆氧烷PNZ为锆源、炔丙基酚醛PN为碳源制备了一种ZrC液相陶瓷前驱体PNZ-PN,该前驱体经1 600℃热解能够转化为高度结晶的ZrC陶瓷.通过FT-IR、DSC、TGA对前驱体的固化过程及固化样的热失重行为进行了分析;通过XRD、元素分析和SEM对热解产物的晶相组成及微观形貌进行了分析.结果表明:1 200℃以下,热解产物主要是ZrO2,1 400℃时开始发生碳热还原反应出现结晶度较小的ZrC,经1 600℃热解后可完全转化为ZrC;PN的加入量会影响热解过程中陶瓷样品的ZrO2晶相及1 600℃热解产物的碳含量,通过调整PN的加入量最终可得到自由碳含量1.66%、近似纯相的ZrC陶瓷;得到的陶瓷粒子Zr、C元素分布均匀、粒径主要分布为100 ~200 nm.","authors":[{"authorName":"刘丹","id":"f3b14b9b-e228-4581-ad21-ed3de238ef54","originalAuthorName":"刘丹"},{"authorName":"邱文丰","id":"7617e10e-07b9-4ecf-a38c-02c58400bb79","originalAuthorName":"邱文丰"},{"authorName":"蔡涛","id":"13d017ba-65dc-48cd-b44c-959c1e6405cf","originalAuthorName":"蔡涛"},{"authorName":"孙娅楠","id":"9968cda6-fd30-4d59-ad92-f8951aae73d3","originalAuthorName":"孙娅楠"},{"authorName":"赵彤","id":"fb381b8f-e1ff-4a24-8918-9c31abc41ca6","originalAuthorName":"赵彤"}],"doi":"10.3969/j.issn.1007-2330.2014.01.016","fpage":"79","id":"2cf3b39e-8411-4b49-9857-d964663e965f","issue":"1","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"3ca433d2-ac90-41d2-93ac-a48c59d00ba4","keyword":"碳热还原反应","originalKeyword":"碳热还原反应"},{"id":"fb9c2a9d-9205-440f-9122-47285f4e8065","keyword":"固化","originalKeyword":"固化"},{"id":"763e7f39-ec12-4ad9-b802-5a3273a83ce3","keyword":"热解","originalKeyword":"热解"},{"id":"4d066cd6-3664-44f4-a1e5-0a715b809be0","keyword":"微观形貌","originalKeyword":"微观形貌"}],"language":"zh","publisherId":"yhclgy201401016","title":"碳化锆液相陶瓷前驱体的制备及陶瓷化","volume":"44","year":"2014"},{"abstractinfo":"运用多元醇法以二甘醇(DEG)为溶剂,添加适量GdCl3、TbCl3配制成前驱液,在80℃下加入NaOH溶液搅拌合成Gd2O3:Tb3+纳米晶.为了研究GdCl3溶液浓度对纳米晶粒径及发光性能的影响,配制了不同浓度的GdCl3进行合成实验.结果表明,随着前驱液浓度的提高,纳米晶的粒径不断增大且发光强度也呈上升趋势.在该纳米晶中,Tb3+形成独立的发光中心,发射光谱呈现典型的Tb3+发射曲线,最强发射峰位于544 nm(对应5 D4→7F5能级跃迁)附近,该峰伴随前驱液浓度的提高发光强度增强最为明显.最后探讨了Gd2O3:Tb3+纳米晶的发光机理.","authors":[{"authorName":"蔡少韩","id":"f9305575-40fe-42ad-b520-8bd13bdd5864","originalAuthorName":"蔡少韩"},{"authorName":"欧梅桂","id":"625b7ff2-b638-45e7-8e23-73e858ebb56f","originalAuthorName":"欧梅桂"},{"authorName":"杨春林","id":"9c4c3d05-d54a-4cd8-ac9f-affbf82b39d3","originalAuthorName":"杨春林"}],"doi":"","fpage":"21","id":"46d868dc-cea4-4460-bfc6-096e5ec464e9","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"50b21c5b-09d8-4749-93af-4ed5b0e8f125","keyword":"前驱液浓度","originalKeyword":"前驱液浓度"},{"id":"edc8e036-7755-41f6-8e73-dc2e92234be2","keyword":"晶粒尺寸","originalKeyword":"晶粒尺寸"},{"id":"50487445-6ba3-4820-a493-d48a0d80f76e","keyword":"发光性能","originalKeyword":"发光性能"}],"language":"zh","publisherId":"cldb201308007","title":"前驱液浓度对Gd2O3:Tb3+粒度及发光性能的影响","volume":"27","year":"2013"},{"abstractinfo":"本研究采用溶胶凝胶颗粒包覆技术,将钙铜离子均匀包覆在2212颗粒表面,通过适当的热处理,使包覆层转变为Ca2CuO3+CuO相,同时确保2212相结构稳定,从而获得了均匀混合的装管前驱粉体.详细研究了钙铜溶胶体系的胶凝工艺,2212悬浮体系的稳定性以及Ca2CuO3 成相温区等工艺参数,并利用XRD, SEM等分析手段,研究了粉体的粒度分布,形貌,相组成及其均匀性.","authors":[{"authorName":"段镇忠","id":"e3f77bf8-59de-457c-a1f0-4154b901f320","originalAuthorName":"段镇忠"},{"authorName":"李月南","id":"a2ed5a0d-2f92-4a77-a917-a173182aaa62","originalAuthorName":"李月南"},{"authorName":"姚永勋","id":"5ac08bf0-5a1c-445b-9c0a-35adba176ca5","originalAuthorName":"姚永勋"},{"authorName":"栾文洲","id":"420736c6-f4d1-4d5e-8436-93633823a6a6","originalAuthorName":"栾文洲"},{"authorName":"王媛","id":"540cde38-651c-4816-94f7-6ccb5a727f10","originalAuthorName":"王媛"},{"authorName":"冯日宝","id":"74875291-5f1d-4de1-aef6-71aecb2ec713","originalAuthorName":"冯日宝"},{"authorName":"周其","id":"30d9971c-5245-4bdc-a990-1f5f560b5caa","originalAuthorName":"周其"},{"authorName":"古宏伟","id":"bf03e63e-e0ac-4a40-b944-87c5f1ecd5f3","originalAuthorName":"古宏伟"}],"doi":"10.3969/j.issn.1000-3258.2003.04.012","fpage":"300","id":"2e00e7ad-97e0-4556-9c47-13223a500f80","issue":"4","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"e40aeecf-cf83-47ff-8168-fe55df24380e","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"011d451e-356d-4d48-af9b-53112f84700c","keyword":"Bi-2223","originalKeyword":"Bi-2223"},{"id":"0fdbe1b9-64cb-4122-a8d3-b9efa5d0484e","keyword":"包覆前驱粉","originalKeyword":"包覆前驱粉"}],"language":"zh","publisherId":"dwwlxb200304012","title":"液相混合铋系超导前驱粉体工艺研究","volume":"25","year":"2003"},{"abstractinfo":"液相前驱体浸渗是一种能够引入含量和分布可控的外来组元的工艺. 本文综述了浸渗技术的研究情况, 着重从传质机理研究使用的坯体和前驱体的种类与特性方面, 分析了该工艺的特点, 揭示了如何通过控制浸渗工艺参数实现对最终材料成份与性能的调控. 已有的研究表明, 作为一种普适性的方法, 浸渗工艺有望推广到其它材料体系中去, 而且在实现块体均匀少量掺杂、表面强化、梯度与功能材料的制备方面具有独特的优势及发展前景.","authors":[{"authorName":"刘冠伟","id":"c1bad0f6-3259-4b9b-a6b5-1d06a32f6c16","originalAuthorName":"刘冠伟"},{"authorName":"谢志鹏","id":"5e00bf13-a17a-4b54-b4f4-7bad60511f03","originalAuthorName":"谢志鹏"},{"authorName":"吴音","id":"93515e40-e513-4cc9-b843-f5c4ed7adc53","originalAuthorName":"吴音"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2011.01121","fpage":"1121","id":"f7794f9c-bc9e-43ec-9fad-c3ed9872913a","issue":"11","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"549a0f06-02ae-4fca-b970-e734e7257971","keyword":"浸渗","originalKeyword":"浸渗"},{"id":"41add78a-7a3a-4ba8-a3f4-ab13e83894ce","keyword":" doping","originalKeyword":" doping"},{"id":"5436a3c7-d898-45eb-8b16-f71cc99272ea","keyword":" surface modification","originalKeyword":" surface modification"},{"id":"bf61c0b6-fbfd-48ee-ab16-b19540702c92","keyword":" composite","originalKeyword":" composite"},{"id":"9adf7101-e299-4c8a-8270-973e22543131","keyword":" gradient material","originalKeyword":" gradient material"},{"id":"d1003c90-e58e-4e2f-b8a8-59cabe6b7605","keyword":" review","originalKeyword":" review"}],"language":"zh","publisherId":"1000-324X_2011_11_10","title":"液相前驱体浸渗技术调控陶瓷材料组成和特性的研究进展","volume":"26","year":"2011"},{"abstractinfo":"液相前驱体浸渗是一种能够引入含量和分布可控的外来组元的工艺.本文综述了浸渗技术的研究情况,着重从传质机理研究使用的坯体和前驱体的种类与特性方面,分析了该工艺的特点,揭示了如何通过控制浸渗工艺参数实现对最终材料成份与性能的调控.已有的研究表明,作为一种普适性的方法,浸渗工艺有望推广到其它材料体系中去,而且在实现块体均匀少量掺杂、表面强化、梯度与功能材料的制备方面具有独特的优势及发展前景.","authors":[{"authorName":"刘冠伟","id":"72f390cb-26cf-4f96-9f24-7eee30cad524","originalAuthorName":"刘冠伟"},{"authorName":"谢志鹏","id":"f193d5a5-2a85-4e2e-ad48-3ca986fae9eb","originalAuthorName":"谢志鹏"},{"authorName":"吴音","id":"28e85da7-1b11-4603-8478-ff6f1a12c58c","originalAuthorName":"吴音"}],"doi":"10.3724/SP.J.1077.2011.01121","fpage":"1121","id":"f1839d9a-6576-4198-a477-60a441bfe9db","issue":"11","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"8786d3f5-4797-482b-89b5-be0141a163c7","keyword":"浸渗","originalKeyword":"浸渗"},{"id":"42a396f8-9e10-428a-83cd-10af073b641d","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"cddb2f20-99c7-410e-a793-611a1504abf8","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"4f150216-515a-4496-a670-576103c2dcfb","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"6584da42-7e81-4c54-9497-49b6b938b35e","keyword":"梯度材料","originalKeyword":"梯度材料"},{"id":"fcbfbebc-a972-44fd-84e7-8dfbd509b285","keyword":"综述","originalKeyword":"综述"}],"language":"zh","publisherId":"wjclxb201111001","title":"液相前驱体浸渗技术调控陶瓷材料组成和特性的研究进展","volume":"26","year":"2011"},{"abstractinfo":"以ZrOCl2·8H2O为原料采用溶胶凝胶法配置不同浓度的前驱体,用等离子喷涂法制备了ZrO2涂层.用SEM,XRD分析了涂层的显微组织与晶型结构.结果表明,该方法制得的涂层不具备层状组织结构,涂层断面上均匀地分布大小相近的圆状孔隙.涂层的结晶状况随着前驱体料浆的浓度而变化,浓度太大或太小都给涂层带来不利的影响,实验证明0.8mol/L前驱体料浆制备的涂层结晶状况良好;经计算和表征确定涂层内品粒在纳米尺寸范围,明显小于常规方法制备纳米涂层的晶粒.","authors":[{"authorName":"张子军","id":"5eafc140-bcda-45f7-87e9-8df86f9d8fc8","originalAuthorName":"张子军"},{"authorName":"程旭东","id":"1ae5bd4b-8d96-4a81-8634-5152025d33d1","originalAuthorName":"程旭东"},{"authorName":"李其连","id":"2179108d-e047-48d4-89f0-174c6e03d6fa","originalAuthorName":"李其连"},{"authorName":"邓飞飞","id":"3e87b1c6-efaf-4f60-a438-1d1fb589cf0f","originalAuthorName":"邓飞飞"},{"authorName":"高忠宝","id":"c7efbe02-1820-425c-80a8-64749ea75b07","originalAuthorName":"高忠宝"},{"authorName":"陈明","id":"74298c6f-8e81-482e-892f-57e3bf2ab26e","originalAuthorName":"陈明"},{"authorName":"毛晻","id":"5e74e289-f104-4c40-9c73-9c27c675a5f3","originalAuthorName":"毛晻"},{"authorName":"杨章富","id":"2a6602af-0a2c-4165-ba54-ddc8967b65d0","originalAuthorName":"杨章富"}],"doi":"10.3969/j.issn.1001-4381.2008.07.015","fpage":"59","id":"b07bec97-9bbc-481a-a21a-b59b579041b2","issue":"7","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"47284e8c-c901-4b01-aa32-e38d0f540d12","keyword":"前驱体","originalKeyword":"前驱体"},{"id":"490c0906-68a8-407e-aadd-e918e032e8b3","keyword":"等离子喷涂","originalKeyword":"等离子喷涂"},{"id":"dc071673-29c6-430b-bdfd-9abab7f1d89b","keyword":"纳米涂层","originalKeyword":"纳米涂层"}],"language":"zh","publisherId":"clgc200807015","title":"前驱体溶液对液相等离子喷涂ZrO2纳米涂层结构和形貌的影响","volume":"","year":"2008"}],"totalpage":2263,"totalrecord":22621}