欢迎登录材料期刊网

材料期刊网

高级检索

基于表面机械研磨处理技术(SMAT)和温轧工艺,可以加工出具有高强度和理想韧性的层合纳米化结构材料。为了研究层合轧压SMAT纳米化304不锈钢材料的变形行为及随后的损伤起始与演化过程,采用内聚有限元方法,建立了用于预测该材料力学性能的有限元模型。基于该模型,评估了材料中纳米晶层性质,包括法向内聚强度、切向内聚强度、损伤演化断裂能和体积含量对材料整体强度和韧性的影响。通过比较数值仿真结果与实验结果,验证了模型的合理性和准确性。同时预测结果表明,增加纳米晶层的内聚强度和减小其断裂能都能提高材料的韧性;增加纳米晶层的体积含量,材料的整体韧性降低,但强度增加。

Based on the techniques of surface mechanical attrition treatment(SMAT) and warm co-rolling,laminated and nanostructured materials with high strength and exceptional ductility could be produced.In order to study the deformation behavior and associated damage initiation/evolution process in the layered co-rolled SMATed 304 stainless steel,the cohesive finite element method(CFEM) was employed to generate a model which could be used to predict the mechanical properties of the material.Based on the model,the effects of nanograin layer properties such as normal cohesive strength,tangential cohesive strength,fracture energy and volume fraction on the overall strength and ductility were investigated.The comparison between simulation result and experimental result demonstrates that the model is reasonable and accurate.Meanwhile,the predicted results indicate that the ductility of material increases with the increasing of nanograin layer cohesive strength and the decreasing of nanograin layer fracture energy.With increasing the volume fraction of the nanograin layer,the ductility of the material reduces,but the strength increases.

参考文献

[1] Valiev R Z, Alexandrov I V, Zhu Y T, Lowe T C. Paradox of strength and ductility in metals processed by severe plastic deformation [J]. J Mater Res, 2002, 17(1): 5-8.
[2] Chen A Y, Zhang J B, Lu J, Lun W, Song H W. Necking propagated deformation behavior of layer-structured steel prepared by co-warm rolled surface nanocrystallized 304 stainless steel [J]. Mater Lett, 2007, 61(30): 5191-5193.
[3] Chen A Y, Li D F, Zhang J B, Song H W, Lu J. Make nanostructured metal exceptionally tough by introducing non-localized fracture behaviors [J]. Scripta Mater, 2008, 59(6): 579-582.
[4] Fischer G, Li V C. Effect of fiber reinforcement on the response of structural members [J]. Eng Frac Mech, 2007, 74(1/2): 258-272.
[5] Lepech M D, Li V C. Large-scale processing of engineered cementitious composites [J]. ACI Mater J, 2008, 105(4): 358-366.
[6] 李成虎, 燕 瑛. z-pin增强复合材料T型接头层间性能的建模与分析 [J]. 复合材料学报, 2010, 27(6): 152-157.
[7] 朱炜垚, 许希武. 复合材料层合板低速冲击损伤的有限元模拟 [J]. 复合材料学报, 2010, 27(6): 200-207.
[8] Guo X, Leung A Y T, Chen A Y, Ruan H H, Lu J. Investigation of non-local cracking in layered stainless steel with nanostructured interface [J]. Scripta Materialia, 2010, 63(4): 403-406.
[9] 崔 浩, 李玉龙, 刘元镛, 郭嘉平, 许秋莲. 基于粘聚区模型的含填充区复合材料接头失效数值模拟 [J]. 复合材料学报, 2010, 27(2): 161-168.
[10] 泮世东, 吴林志, 孙雨果. 含面芯界面缺陷的蜂窝夹芯板侧向压缩破坏模式 [J]. 复合材料学报, 2007, 24(6): 121-127.
[11] 喻溅鉴, 周储伟. 复合材料疲劳分层的界面单元模型 [J]. 复合材料学报, 2009, 26(6): 167-172.
[12] 孔 斌, 叶 强, 陈普会, 柴亚南. 复合材料整体加筋板轴压后屈曲失效表征 [J]. 复合材料学报, 2010, 27(5): 150-155.
[13] Foulk J W III, Johnson G C, Klein P A, Ritchie R O. On the toughening of brittle materials by grain bridging: Promoting intergranular fracture through grain angle, strength, and toughness [J]. J Mech Phys Sol, 2008, 56(6): 2381-2400.
[14] Yu R C, Ruiz G, Chaves E W V. A comparative study between discrete and continuum models to simulate concrete fracture [J]. Eng Fract Mech, 2008, 75(1): 117-127.
[15] Yang Z J, Su X T, Chen J F, Liu G H. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials [J]. International Journal of Solids and Structures, 2009, 46(17): 3222-3234.
[16] Barenblatt G I. The formation of equilibrium cracks during brittle fracture: General ideas and hypotheses, axially-symmetric cracks [J]. Applied Mathematics and Mechanics, 1959, 23(3): 622-636.
[17] Dugdale D S. Yielding of steel sheets containing slits [J]. Journal of Mechanics of Physics and Solids, 1960, 8(2): 100-104.
[18] Needleman A. Continuum model for void nucleation by inclusion debonding [J]. J Appl Mech, 1987, 54(3): 525-531.
[19] Chen X H, Lu J, Lu L, Lu K. Tensile properties of a nanocrystalline 316L austenitic stainless steel [J]. Scripta Mater, 2005, 52(10): 1039-1044.
[20] Lin Y, Lu J, Wang L, Xu T, Xue Q. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasmanitrided AISI 321 stainless steel [J]. Acta Materialia, 2006, 54(20): 5599-5605.
[21] Arifvianto B, Mahardika M, Dewo P, Iswanto P T, Salim U A. Effect of surface mechanical attrition treatment (SMAT) on microhardness, surface roughness and wettability of AISI 316L [J]. Materials Chemistry and Physics, 2011, 125(3): 418-426.
[22] Chan H L, Ruan H H, Chen A Y, Lu J. Optimization of the strain rate to achieve exceptional mechanical properties of 304 stainless steel using high speed ultrasonic surface mechanical attrition treatment [J]. Acta Materialia, 2010, 58(15): 5086- 5096..
[23] Wen M, Liu G, Gu J F, Guan W M, Lu J. The tensile properties of titanium processed by surface mechanical attrition treatment [J]. Surface and Coatings Technology, 2008, 202(19): 4728-4733.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%