欢迎登录材料期刊网

材料期刊网

高级检索

Gleeble1500 thermo-mechanical simulation machine is considered to be the first grade equipment in materials' research. However, it is seldom used in superplastic research. Perhaps this is because its specimen's heating method is not suitable to get large elongation. Elongation is an important parameter to evaluate superplasticity, but some other parameters such as the relationship between stress and strain rate are more important than elongation-it is an essential property to superplasticity. The stress-strain rate relationship can be very easily and very accu- rately got with Gleeble machine than with some other simlar equipment, and the relationship between microstructure and superplastic deformation is more easily examined with Gleeble. Present authors have got some new achievement in anisotropy, heterogeneity of superplastic deformation, and first put forward the regulation of dynamic equilibrium in microstructural evolution during superplastic deformation. All of these have been concluded from the experimental results mainly through Gleeble as well as the microstructural examination.The research work has got the support of National Natural Science Foundation and some international cooperation. Some theoretic and experimental results have been used in the practice of superplastic forming. Obvious effect of reducing cost and improving quality of formed parts has been achieved.

参考文献

[1]
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%