欢迎登录材料期刊网

材料期刊网

高级检索

在FTO(即掺杂氟的SnO2透明导电玻璃)基底上采用两步恒流电沉积,得到厚度约500 nm的金属Cu薄膜,然后置于SnO2溶胶中浸渍并经175°C加热氧化,制得由超薄SnO2修饰的Cu2O多孔薄膜。利用X射线衍射(XRD)、拉曼光谱、扫描电镜(SEM)和漫反射–紫外可见光谱(UV-Vis DRS)表征了试样的结构、形貌及光学性质。通过在0.2 mol/L Na2SO4溶液中测试样品在可见光和零偏压下的光电流,分析了薄膜的光电化学性能。结果表明,超薄的SnO2修饰层能显著增强Cu2O多孔薄膜的光电化学性能。在SnO2溶胶中浸渍10 s所制备的超薄SnO2修饰Cu2O多孔薄膜,其光电流密度是Cu2O未修饰薄膜的4倍。

A ca.500 nm-thick metallic Cu thin film was obtained on the surface of FTO (F-doped SnO2 transparent conductive glass) substrate by two-step galvanostatic electrodeposition, and then dipped in a SnO2 sol followed by oxidation at 175 °C to prepare a porous Cu2O thin film modified by ultrathin SnO2 layer. The structure, morphology, and optical property of the ultrathin SnO2-modified porous Cu2O thin film were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and diffuse reflection ultraviolet–visible spectroscopy (UV-Vis DRS), and the photoelectro- chemical property of the thin film was analyzed via testing the photocurrent in 0.2 mol/L Na2SO4 solution under visible light and at zero bias. The results revealed that the ultrathin SnO2 layer greatly enhances the photoelectrochemical performance of the porous Cu2O thin film. The photocurrent density of the ultrathin SnO2-modified porous Cu2O thin film prepared by dipping in the SnO2 sol for 10 s is four times that of the unmodified one.

参考文献

[1] FUJISHIMA A;HONDA K .Electrochemical photolysis of water at a semiconductor electrode[J].NATURE,1972,238(5358):37-38.
[2] TIAN J Q;LI H Y;XING Z C et al.One-pot green hydrothermal synthesis of CuO-Cu2O-Cu nanorod-decorated reduced graphene oxide composites and their application in photocurrent generation[J].Catalysis Science & Technology,2012,2(11):2227-2230.
[3] Richa Panda;Vandana Rathore;Manoj Rathore;VilasShelke;Nitu Badera;L.S. Sharath Chandra;Deepti Jain;Mohan Gangrade;T.Shripati;V. Ganesan .Carrier recombination in Cu doped CdS thin films: Photocurrent and optical studies[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2012(12):5086-5093.
[4] Maidhily Manikandan;Toyokazu Tanabe;Peng Li .Photocatalytic Water Splitting under Visible Light by Mixed-Valence Sn3O4[J].ACS applied materials & interfaces,2014(6):3790-3793.
[5] BERGER A;SEGALMAN R A;NEWMAN J .Material requirements for membrane separators in a water-splitting photoelectrochemical cell[J].Energy & Environmental Science,2014,7(4):1468-1476.
[6] Mariano D. Susman;Yishay Feldman;Alexander Vaskevich;Israel Rubinstein .Chemical Deposition of Cu_2O Nanocrystals with Precise Morphology Control[J].ACS nano,2014(1):162-174.
[7] Changli Li;Yanbo Li;Jean-Jacques Delaunay .A Novel Method to Synthesize Highly Photoactive Cu2O Microcrystalline Films for Use in Photoelectrochemical Cells[J].ACS applied materials & interfaces,2014(1):480-486.
[8] Zhonghai Zhang;Peng Wang .Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2012(6):2456-2464.
[9] Lingmei Liu;Weiyi Yang;Qi Li .Synthesis of Cu2O Nanospheres Decorated with TiO2 Nanoislands, Their Enhanced Photoactivity and Stability under Visible Light Illumination, and Their Post-illumination Catalytic Memory[J].ACS applied materials & interfaces,2014(8):5629-5639.
[10] 徐晨洪,韩优,迟名扬.基于Cu2O的光催化研究[J].化学进展,2010(12):2290-2297.
[11] Zhang, Z.;Dua, R.;Zhang, L.;Zhu, H.;Zhang, H.;Wang, P. .Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction[J].ACS nano,2013(2):1709-1717.
[12] Phong D. Tran;Sudip K. Batabyal;Stevin S. Pramana .A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O[J].Nanoscale,2012(13):3875-3878.
[13] 陈善亮,应鹏展,顾修全,张伦.氧化亚铜/氧化锌复合薄膜的制备及可见光催化研究[J].电镀与涂饰,2012(12):1-4.
[14] FUKUDA A;ICHIMURA M .Heterostructure solar cells based on sol-gel deposited SnO2and electrochemically deposited Cu2O[J].Materials Sciences and Applications,2013,4(6A):1-4.
[15] Yongling Du;Nuo Zhang;Chunming Wang .Photo-catalytic degradation of trifluralin by SnO2-doped Cu2O crystals[J].Catalysis Communications,2010(7):670-674.
[16] 李小辉,阮孟勇,漆寒梅,张南,牛振江.多孔Cu2O/SnO2复合薄膜的制备及其可见光催化降解罗丹明B的性能[J].世界科技研究与发展,2011(05):791-794.
[17] 徐彬,李小辉,童晓静,牛振江,冷文华,张鉴清.多孔SnO2-Cu2O复合薄膜的制备及其光催化性能[J].北京科技大学学报,2010(12):1580-1585.
[18] FA Garces;N. Budini;R.R. Koropecki;R.D. Arce .Structural mosaicity and electrical properties of pyrolytic SnO_2:F thin films[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2013(Mar.15):172-178.
[19] Lei Huang;Feng Peng;Fumio S. Ohuchi .'In situ' XPS study of band structures at Cu_2O/TiO_2 heterojunctions interface[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2009(17):2815-2819.
[20] Jin You Zheng;Abhijit P. Jadhav;Guang Song;Chang Woo Kim;Young Soo Kang.Cu and Cu_2O films with semi-spherical particles grown by electrochemical deposition[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2012:50-56.
[21] McShane, CM;Choi, KS .Photocurrent Enhancement of n-Type Cu2O Electrodes Achieved by Controlling Dendritic Branching Growth[J].Journal of the American Chemical Society,2009(7):2561-2569.
[22] Anna Osherov;Changqiong Zhu;Matthew J. Panzer .Role of Solution Chemistry in Determining the Morphology and Photoconductivity of Electrodeposited Cuprous Oxide Films[J].Chemistry of Materials: A Publication of the American Chemistry Society,2013(5):692-698.
[23] S. Bijani;R Schrebler;E. A, Dalchiele .Study of the Nucleation and Growth Mechanisms in the Electrodeposition of Micro- and Nanostructured Cu2O Thin Films[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2011(43):21373-21382.
[24] Ji EunKo;BobJinKwon;HyunJung .Synthesis andcharacterizationoftheSnO2-pillared layered titanate nanohybrid[J].The journal of physics and chemistry of solids,2010(4):658-662.
[25] Laszlo Koeroesi;Jozsef Nemeth;Imre Dekany .Structural and photooxidation properties of SnO_2/layer silicate nanocomposites[J].Applied clay science,2004(1/2):29-40.
[26] Jong Guk Kim;Sang Hoon Nam;Sang Ho Lee .SnO2 Nanorod-Planted Graphite: An Effective Nanostructure Configuration for Reversible Lithium Ion Storage[J].ACS applied materials & interfaces,2011(3):828-835.
[27] CAO L;LIU J;XU S L et al.Inherent superhydrophobicity of Sn/SnOx films prepared by surface self-passivation of electrodeposited porous dendritic Sn[J].Materials Research Bulletin,2013,48(11):4804-4810.
[28] Gao, H.;Zhang, J.;Li, M.;Liu, K.;Guo, D.;Zhang, Y. .Evaluating the electric property of different crystal faces and enhancing the Raman scattering of Cu_2O microcrystal by depositing Ag on the surface[J].Current applied physics: the official journal of the Korean Physical Society,2013(5):935-939.
[29] G. Prabhakaran;Ramaswamy Murugan.Room temperature ferromagnetic properties of Cu_2O microcrystals[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2013:572-575.
[30] Arunas Jagminas;Jelena Kovger;Alfonsas Reza;Gediminas Niaura;Jurga Juodkazyte;Algis Selskis;Rokas Kondrotas;Benjaminas Sebeka;Jurate Vaiciuniene.Decoration of the TiO_2 nanotube arays with copper suboxide by AC treatment[J].Electrochimica Acta,2014:516-523.
[31] FAZIO E;NERI F;SAVASTA S et al.Surface-enhanced Raman scatering of SnO2 bulk material and coloidal solutions[J].Physical Review B,2012,85(19):195423.
[32] Jasneet Kaur;Jyoti Shah;R.K. Kotnala .Raman spectra, photoluminescence and ferromagnetism of pure, Co and Fe doped SnO_2 nanoparticles[J].CERAMICS INTERNATIONAL,2012(7):5563-5570.
[33] LAN T;LI C;FULTZ B .Phonon anharmonicity of rutile SnO2 studied by Raman spectrometry and first principles calculations of the kinematics of phono-phonon interactions[J].Physical Review B,2012,86(13):134302.
[34] A. Ayeshamariam;S. Ramalingam;M. Bououdina;M. Jayachandran.Preparation and characterizations of SnO_2 nanopowder and spectroscopic (FT-IR, FT-Raman, UV-Visible and NMR) analysis using HF and DFT calculations[J].Spectrochimica acta, Part A. Molecular and biomolecular spectroscopy,2014:1135-1143.
[35] Bagheri-Mohagheghi, MM;Shahtahmasebi, N;Alinejad, MR;Yousseffi, A;Shokooh-Saremi, M .The effect of the post-annealing temperature on the nano-structure and energy band gap of SnO2 semiconducting oxide nano-particles synthesized by polymerizing-complexing sol-gel method[J].Physica, B. Condensed Matter,2008(13/16):2431-2437.
[36] TACHIBANA Y;MURAMOTO R;MATSUMOTO H et al.Photoelectrochemistry of p-type Cu2O semiconductor electrode in ionic liquid[J].Research on Chemical Intermediates,2006,32(5/6):575-583.
[37] KIM M S;YOON S H;CHANG D Y.Synthesis and characterization of electrodeposited Cu2O thin film for photo-electrochemical cells[A].[S. l.]:The Electrochemical Society,2012:3301.
[38] Siripala W.;Ivanovskaya A.;Jaramillo TF.;Baeck SH.;McFarland EW. .A CU2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2003(3):229-237.
[39] 刘平,周廷云,林华香,傅贤智.TiO2/SnO2复合光催化剂的耦合效应[J].物理化学学报,2001(03):265-269.
[40] XU H;OUYANG S X;LIU L Q et al.Porous-structured Cu2O/TiO2 nanojunction material toward efficient CO2 photoreduction[J].NANOTECHNOLOGY,2014,25(16):165402.
[41] S. T. Ren;G. H. Fan;M. L. Liang;Q. Wang;G. L. Zhao .Electrodeposition of hierarchical ZnO/Cu_2O nanorod films for highly efficient visible-light-driven photocatalytic applications[J].Journal of Applied Physics,2014(6):064301-1-064301-7.
[42] AMANO F;EBINA T;OHTANI B .Enhancement of photocathodic stability of p-type copper(I)oxide electrodes by surface etching treatment[J].THIN SOLID FILMS,2014,550:340-346.
[43] TIAN Q Y;WU W;SUN L L et al.Tube-like ternaryα-Fe2O3@SnO2@Cu2O sandwich heterostructures:Synthesis and enhanced photocatalytic properties[J].ACS Applied Materials & Interfaces,2014,6(15):13088-13097.
[44] XU Y;SCHOONEN M A A .The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J].AMERICAN MINERALOGIST,2000,85(3/4):543-556.
[45] Y. Hou;X. Y. Li;Q. D. Zhao;X. Quan;G. H. Chen .Fabrication of Cu_(2)O/TiO_(2) nanotube heterojunction arrays and investigation of its photoelectrochemical behavior[J].Applied physics letters,2009(9):093108-1-093108-3.
[46] ZHANG Y Z;ZHAO Y Q;LI F Y et al.Photovoltaic performance enhancement of Cu2O photocathodes by electrostatic adsorption of polyoxometalate on Cu2O crystal faces[J].RSC Advances,2014,4(3):1362-1365.
[47] AN X Q;LI K F;TANG J W .Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2[J].ChemSusChem,2014,7(4):1086-1093.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%