欢迎登录材料期刊网

材料期刊网

高级检索

本文综述了纳米陶瓷在超塑性、铁电性能、力学性能和增韧等方面的特殊性能,介绍了纳米陶瓷的两步法烧结、放电等离子烧结、超高压烧结和微波烧结等成功的烧结方法并阐述了这些特殊烧结方法的烧结机理.此外,对纳米复相陶瓷的特性也进行了介绍.

参考文献

[1] Langdon T G .The role of grain boundaries in high temperature deformation[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1993,66(1-2):67-79.
[2] 郭景坤;徐跃萍 .纳米陶瓷及其进展[J].硅酸盐学报,1992,20(03):286-291.
[3] Karch J;Birringer R;Gleiter H .Ceramics ductile at low temperature[J].Nature,1987,330(6148):556-558.
[4] Niihara K .New design concept of structural ceramics-ceramic nanecompesites[J].Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi / Journal of the Ceramic Society of Japan,1991,99(10):974-982.
[5] Ohji T.;Choa YH.;Niihara K.;Jeong YK. .Strengthening and toughening mechanisms of ceramic nanocomposites[J].Journal of the American Ceramic Society,1998(6):1453-1460.
[6] Arot G;Hennings D;With G D .Dielectric properties of fine-grained barium titanate ceramics[J].Journal of Applied Physics,1985,58(04):1619-1625.
[7] Zhao Z;Buscagila V;Viviani M et al.Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics[J].Physical Review B,2004,70:024107-0241-8.
[8] Buscaglia MT;Viviani M;Buscaglia V;Mitoseriu L;Testino A;Nanni P;Zhao Z;Nygren M;Harnagea C;Piazza D .High dielectric constant and frozen macroscopic polarization in dense nanocrystalline BaTiO3 ceramics[J].Physical review, B. Condensed matter and materials physics,2006(6):4114-1-4114-10-0.
[9] Wang X H;Deng X Y;Wen H et al.Phase transition and high dielectric constant of bulk dense nanograin barium titanate ceramics[J].Applied Physics Letters,2006,89:162902-1621-3.
[10] Chen I W;Wang X H .Sintering dense nanocrystalline oxide without final stage grain growth[J].Nature,2000,404:168-171.
[11] X.-H. Wang;X.-Y. Deng;Hai-Lm Bai .Two-Step Sintering of Ceramics with Constant Grain-Size, II: BaTiO_3 and Ni-Cu-Zn Ferrite[J].Journal of the American Ceramic Society,2006(2):438-443.
[12] Mazaheri M;Simchi A;Fard G .Donsification and grain growth of nanocrystalline 3Y-TZP during two-step sintering[J].Journal of the European Ceramic Society,2008,28:2933-2939.
[13] Chaim R;Margulis M .Densification maps for spark plasma sintering of nanocrystalline MgO ceramics[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2005,407:180-187.
[14] Tokita M .Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering[J].Materials Science and Engineering B:Solid-state materials for advanced technology,2002,90:34-37.
[15] Wan J;Duan R;Mukherjee A .Spark plasma sintering of silicon nitide/silicon carbide nanocompesites with reduced additive amounts[J].Scripta Materialia,2005,53:663-667.
[16] H.J.Hwang and K.Niihara .Fabrication of piezoelectric particle-dispersed ceramic nanocomposite[J].Journal of the European Ceramic Society,1999(6/7):993-997.
[17] Zhan G D;Kuntz J;Wan J et al.Alumina-based nanocomposites consolidated by spark plasma sintering[J].Scripta Materialia,2002,47:734-741.
[18] Zhang JF;Wang LJ;Shi L;Jiang W;Chen LD .Rapid fabrication of Ti3SiC2-SiC nanocomposite using the spark plasma sintering-reactive synthesis (SPS-RS) method[J].Scripta materialia,2007(3):241-244.
[19] J. L. Li;G. Z. Bai;J. W. Feng .Microstructure and mechanical properties of hot-pressed carbon nanotubes compacted by spark plasma sintering[J].Carbon: An International Journal Sponsored by the American Carbon Society,2005(13):2649-2653.
[20] Jae Won Lee;Zuhair A. Munir;Masachika Shibuya .Synthesis of Dense TiB_2-TiN Nanocrystalline Composites through Mechanical and Field Activation[J].Journal of the American Ceramic Society,2001(6):1209-1216.
[21] M. Gupta;W.L.E. Wong .Enhancing Overall Mechanical Performance of Metallic Materials using Two-Directional Microwave Assisted Rapid Sintering[J].Scripta materialia,2005(6):479-483.
[22] Paranosenkov V P;Kelina Y;Plyasunkova L A et al.Preparation of dense ceramics based on silicon nitride[J].Nan Opowders,2003,44(04):223-226.
[23] 李蔚,高濂,洪金生,宫本大树.快速烧结制备纳米Y-TZP材料[J].无机材料学报,2000(02):269-274.
[24] 鲜晓斌,谢茂林,罗德礼,冷邦义,陈伟,鲁伟员.纳米SiC陶瓷的超高压烧结研究[J].硅酸盐学报,2009(07):1268-1272.
[25] Skandan G .Processing of nanostructured zirconia ceramics[J].Nano-Structured Materials,1995,5(02):111-126.
[26] Liao S C;Chen Y J;Kear B H et al.High pressure/low temperature sintering of nanocrystslline alumina[J].Nano-Structured Materials,1998,10(06):1063-1079.
[27] C.J. Xiao;C.Q. Jin;X.H. Wang .Crystal Structure Of Dense Nanocrystalline Batio_3 Ceramics[J].Materials Chemistry and Physics,2008(2/3):209-212.
[28] 黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997:332-333.
[29] Newnham R E;Skinner D P;Cross L E .Connectivity and Piezoelectric-pyroelectric composites[J].Materials Research Bulletin,1978,13:525-536.
[30] T. Hirano;K. Niihara .Microstructure and mechanical properties of Si_3N_4/SiC composites[J].Materials Letters,1995(5/6):249-254.
[31] Hirano T;Niihara K .Thermal shock resistance of Si3N4/SiC nanocomposites fabricated from amorphous Si-C-N precursor powders[J].Materials Letters,1996,26:285-289.
[32] Tatsuki D;Atsushi N .Tensile creep behavior of alumina/sillicon carbide nanocomposite[J].Journal of the American Ceramic Society,1994,77(12):3259-3262.
[33] 宋建荣,李俊国,沈强,宋杰光,张联盟.ZrB2-ZrO2陶瓷的抗热震和抗氧化性能[J].硅酸盐学报,2008(05):663-667.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%