欢迎登录材料期刊网

材料期刊网

高级检索

采用三元体系半无限扩散偶的高斯方法,求解了SiC/Ti6AL4V复合材料界面反应层中相关元素的扩散系数,计算的浓度分布和实测值一致.碳原子通过反应层的扩散服从间隙扩散机制,硅原子的扩散为空位扩散机制.由于碳扩散的振动能最低并且跃迁距离最短,而供硅扩散的空位不足,碳和硅在反应产物TiCx中具有最小的内禀扩散系数,分别为8.9403×10-16和4.7747×10-16 m2·s-1.研究表明,在SiC/Ti6AL4V复合材料界面反应的过程中,反应元素通过反应层TiCx的扩散是一个主要的控制步骤.

The diffusion coefficients of the relative reactive elements in interfacial reaction layer of SiC/Ti6A14V composite were solved by use of Guass method in a semi-infinite diffusion couple for ternary systems, and the concentration distribution of diffusion elements calculated was well fitted to the measurements. C atoms diffuse through the reaction layer by interstitial diffusion mechanism, while Si atoms diffuse through the reaction layer by vacancy diffusion mechanism. C and Si atoms have the minimum intrinsic diffusion coefficients in TiCx layer, which are 8.9403×10-16 and 4.7747×10-16 m2·s-1, respectively, because of the lowest molecular vibrancy energy and transition distance for C atoms and the insufficient vacancy for Si atoms. The reactive element diffusing through the TiCx layer is a dominant determining step in interfacial reaction progress of SiC/Ti6Al4V composite.

参考文献

[1] 杨延清,马志军,李健康,吕祥鸿,艾云龙.SiCf/Superα2复合材料的界面反应及对性能的影响[J].稀有金属材料与工程,2006(01):43-46.
[2] Kirkaldy J S .[J].Canadian Journal of physics,1958,36:899.
[3] Kirkaldy J S .[J].Canadian Journal of physics,1958,36:917.
[4] Dayananda M A;Kim C W .[J].Metallurgical Transactions,1979,10A:1333.
[5] Kim C W;Dayananda M A .[J].Metallurgical Transactions,1983,14A:857.
[6] Sisson R D;Dayananda M A .[J].Metallurgical Transactions,1972,3:647.
[7] Nesbitt J A;Hechel R W .[J].Metallurgical Transactions,1987,10A:2087.
[8] Nesbitt J A;Hechel R W .[J].Metallurgical Transactions,1987,10A:2061.
[9] Randich E;Goldstein J E .[J].Metallurgical Transactions,1975,6A:1553.
[10] Purdy G R;Weichert D H;Kirkaldy J S .[J].Transactions of the Metallurgical Society of AIME,1964,230:1025.
[11] Thompson M S;Morral J E .[J].Acta Metallurgica,1986,34:339.
[12] Jan C H;Swenson D;Zheng X Y et al.[J].Acta Metallurgica Et Materialia,1991,39:303.
[13] Jan C H;Swenson D;Chang Y A.In Fundamental and Applications of Ternary Diffiision[M].Pergamon:Pergamon Press,1990:127.
[14] 吕祥鸿 .SiC连续纤维增强Ti基复合材料的界面扩散行为研究[D].西北工业大学,2006.
[15] Sarian S .[J].Journal of Applied Physics,1969,40(09):3515.
[16] Van Loo F J J;Bastin G F .[J].Metallurgical Transcaction A,1989,20A:401.
[17] Murray J L.Monograph Series on Alloy Phase Diagrams:Phase Diagrams of Binary Titanium Alloys[M].Ohio:ASM,2000:44073.
[18] Tang K;Wang C A;Yong H et al.[J].Journal of Crystal Growth,2001,333:130.
[19] Williams J J;Ye Y Y;Kramer M J et al.[J].Intermetallics,2000,8:937.
[20] 秦善.晶体学基础[M].北京:北京大学出版社,2004:9.
[21] Fan Z;Gao Z X;Cantor B .[J].Composited Part A,1997,28A:131.
[22] 孙振岩;刘春明.合金中的扩散与相变[M].Shenyang:Northeastern Unversity Press,2002
[23] 朱艳 .SiC纤维增强Ti基复合材料界面反应研究[D].西北工业大学,2003.
[24] Yang Y Q;Dudek H J;Kumpfert J .[J].Composited Part A,1998,29A:1235.
[25] 曹楚南;吴荫顺.腐蚀电化学[M].北京:化学工业出版社,1994
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%