欢迎登录材料期刊网

材料期刊网

高级检索

通过测定Al-Mg-Si合金晶界各组成相的极化曲线及不同Mg/Si比 Al-Mg-Si合金晶界组成相(Al-Mg2Si及Al-Mg2Si-Si)间的动态电化学偶合行为,研究了不同Mg/Si比Al-Mg-Si合金的晶间腐蚀机理。研究表明,晶界Si电位比其边缘Al基体正,在整个腐蚀过程中作为阴极导致其边缘Al基体的阳极溶解。晶界Mg2Si电位比其边缘Al基体负,在腐蚀初期将作为阳极而发生阳极溶解;由于Mg2Si中活性较高元素Mg的优先溶解,不活泼元素Si富集,致使Mg2Si电位正移,甚至与其边缘Al基体发生极性转换,导致其边缘Al基体的阳极溶解。Mg/Si>1.73的Al-Mg-Si合金晶界只存在不连续分布的含Mg、Si的析出相,不能在晶界形成连续腐蚀通道,合金不表现出晶间腐蚀敏感性。Mg/Si<1.73的Al-Mg-Si 合金晶界同时析出含Mg、Si析出相和Si粒子;腐蚀首先萌生于 Mg2Si相;而后,Si粒子一方面导致其边缘无沉淀带严重的阳极溶解,另一方面通过加速Mg2Si和晶界无沉淀带的极性转换,协同促进了Mg2Si边缘无沉淀带的阳极溶解,即腐蚀沿晶界Si粒子及Mg2Si粒子边缘的无沉淀带发展。Si粒子促进了腐蚀的发展,导致合金表现出严重的晶间腐蚀敏感性。

The potentiodynamic scanning curves and the electrochemical coupling behaviors of constituent phases at the grain boundary of Al-Mg-Si alloy were investigated. The corrosion mechanism of Al-Mg-Si alloys different ratio of Mg to Si was analyzed. The results show that the Si particle is cathodic to the Al-base and causes the anodic dissolution of Al-base at its adjacent periphery. At the beginning, the precipitate of Mg2Si is anodic to the Al-base and corrosion occurs on its surface. However, during its corrosion process, its potential moves to a positive direction with immersion time increasing, due to the preferential dissolution of Mg and the enrichment of Si, which makes Mg2Si become cathodic to Al- base and leads to the anodic dissolution of the Al-base at its adjacent periphery at a later stage. At the grain boundary of Al-Mg-Si alloys with a ratio of Mg to Si higher than 1.73, the Mg-and-Si contained precipitates are distributed discontinuously, resulting in that they are not sensitive to intergranular corrosion. There exist Mg-and-Si-contained precipitates and Si particles at the grain boundary of Al-Mg-Si alloys with a ratio of Mg to Si less than 1.73, corrosion occurs firstly on the surface of Mg2Si. Meanwhile, the Si particle leads to the great anodic dissolution of the precipitate-free-zone(PFZ) at its adjacent periphery. The Si particle also accelerates the preferential dissolution of Mg in Mg2Si precipitate, expediting the polarity transformation between Mg2Si and the PFZ. As a result, the corrosion development along the PFZ at the adjacent of Mg2Si particle is enhanced.

参考文献

[1]
[2]
[3]
[4]
[5]
[6] Osaki S H, Kinoshita K, Naganuma D. Intergranular corrosion and SCC properties of Al-Mg-Si alloy sheets [J]. J. Inst. Light Met, 2003, 53(4):157-162
[2]Es-Said O S,Frazier W E, Lee E W. The effect of retrogression and reaging on the properties of the 7249 aluminum alloy [J]. JOM. 2003, (1): 45-48
[3]Zheng Z Q, Li H Y, Mo Z M. Retrogression and reaging treatment of a 7055 type aluminum alloy [J]. Chin. J. Nonferrous Met., 2001, 11(5): 771-775
[4](郑子樵, 李红英, 莫志民. 一种7055型铝合金的RRA处理 [J]. 中国有色金属学报,2001, 11(5): 771-775)
[5]Ru J G, Yi L N,Zhang L S. A study of the ultra high strength aluminium alloy heat treatment process [J]. J.Mater Eng., 1999, (2): 37-39
[6](汝继刚, 伊琳娜, 张禄山. 超高强铝合金热处理工艺研究 [J]. 材料工程, 1999, (2): 37-39)
[7] Pzark J K, Ardell A J. Microstructures of the commercial 7075 Al,alloy in the T651 and T7 tempers [J]. Metall. Trans, 1983, 14:1957-1965
[8]Meng Z F, Zheng Y, Long H W, et al, Hardness changes of Al-Zn-Mg alloy during retrogression and reaging [J]. Acta Metall. Sin., 1997, 33(5): 479-484
[9](孟昭富, 郑勇, 龙厚文等. 再时效-回归-再时效处理过程中Al-Zn-Mg 系合金硬度的改变 [J]. 金属学报, 1997, 33(5): 479-484)
[10]Zeng Y, Yin Z M, Zhu Y Z, et al. Effect of RRA on microstructure and properties of new type ultra high strength aluminum alloy [J]. Chin. J. Nonferrous Met., 2004, 14(7): 1188-1194
[11] 郑渝, 尹志民, 朱远志等. RRA处理对超高强铝合金微观组织和性能的影响 [J]. 中国有色金属学报, 2004, 14(7):1188-1194
[12] Li J F, Peng Z W, Li C X, et al. Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium ally with various aging treatements [J]. Trans.Nonferrous Met. Soc. China, 2008, 18:755-762
[13]Wang Z T, Tian R Z. Handbook of Aluminum Alloy and Fabrication (2nd) [M]. ChangSha: Central South University Press, 2000: 132
[14](王祝堂, 田荣璋. 铝合金及其加工手册(第二版)[M]. 长沙:中南大学出版社,2000:132)
[15]Birbilis N, Buchheit R G. Electrochemical characteristics of intermetallic phases in aluminum alloys [J]. J.Electrochem. Soc., 2005, 152(4), B140-B151
[16] Li J F, Zheng Z Q, Li S C, et al. Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys [J]. Corros. Sci, 2007, 49:2436-2449
[17] Buchheit R G, Grant R P, Hlava P F, et al. Local dissolution phenomena associated with S phase(Al2CuMg) particles in aluminum alloy 2024-T3 [J]. J. Electrochem. Soc, 1997, 144(8):2621-2628
[18]Shao M H, Fu Y, Hu R G, et al. A study on pitting corrosion of aluminum alloy 2024-T3 by scanning microreference electrode technique [J]. Mater. Sci. Eng., 2003, A344: 323-327
[19] Li J F, Zheng Z Q, Jiang N, et al. Study on localized corrosion mechanism of 2×
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%