欢迎登录材料期刊网

材料期刊网

高级检索
{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用ODF织构分析方法,对390MPa级超低碳BH钢板热轧、冷轧、退火过程织构演变规律进行研究,并对不同冷轧月下量和不同退火工艺织构进行分析。结果表明:经冷轧变形后的钢板有较强的择优取向,具有典型的{112}〈110〉和{111}〈110〉织构,形变织构中的不利织构{001}〈110〉较强;冷轧压下率为80%时再结晶退火后钢板具有较强的Y织构,{111}〈112:织构取向密度高达11.7;退火温度和保温时间对a织构影响不大,提高退火温度和延长保温时间使y织构增强,r值增加。","authors":[{"authorName":"陈银莉","id":"e9a61769-5320-42ec-b86b-a56541a9e196","originalAuthorName":"陈银莉"},{"authorName":"苏岚","id":"556b5341-1aaa-48d0-b27b-288a4f403cfb","originalAuthorName":"苏岚"},{"authorName":"赵爱民","id":"5652a9f7-6744-495a-b6ed-3b8089e40e87","originalAuthorName":"赵爱民"},{"authorName":"吴雷","id":"982d0303-a98b-4075-9557-339e7fe9eb28","originalAuthorName":"吴雷"},{"authorName":"","id":"ecb8b9cd-aade-4126-9aa3-667f2eb5c184","originalAuthorName":"李本海"},{"authorName":"刘光明","id":"df93c32b-d67a-4707-8469-9e8570982538","originalAuthorName":"刘光明"},{"authorName":"滕华湘","id":"bd15f78c-8ddf-43fd-842e-346748be48a7","originalAuthorName":"滕华湘"}],"doi":"","fpage":"117","id":"2b58eab2-585a-480e-995b-94f57d0d2648","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"c5f31ab3-c452-4b42-bfe5-6f9d644c2b0b","keyword":"织构分析","originalKeyword":"织构分析"},{"id":"1f9c65ad-62af-4fe0-8c2e-c3e7ec0bb12b","keyword":"BH钢板","originalKeyword":"BH钢板"},{"id":"57c5d15a-05e0-4815-ab8e-32d33e12a9ff","keyword":"超低碳","originalKeyword":"超低碳"},{"id":"cf0c58be-a064-47a7-9eb1-03fe5694d667","keyword":"演变","originalKeyword":"演变"},{"id":"faa4e45d-f8fe-4efc-84ec-73d96c532d9f","keyword":"冷轧变形","originalKeyword":"冷轧变形"},{"id":"6cebe752-d098-49fa-812c-f4fcfa97b69d","keyword":"保温时间","originalKeyword":"保温时间"},{"id":"c7d38de7-3593-4418-969a-b92f0987c363","keyword":"退火温度","originalKeyword":"退火温度"},{"id":"de440ebb-0403-486c-82a3-b6dd0a5026fd","keyword":"再结晶退火","originalKeyword":"再结晶退火"}],"language":"zh","publisherId":"jsrclxb201201022","title":"390MPa级超低碳BH钢织构演变规律","volume":"33","year":"2012"},{"abstractinfo":"观察了IF钢热轧薄板边部翘皮缺陷的微观组织与晶界状态,分析了其形成原因和内在机制.结果表明,边部翘皮缺陷具有以下几个特征:在横截面上,翘皮表现为深度约40μm的微裂缝;裂缝附近组织具有混晶、形变的特征;裂缝内存在氧化铁皮,附近存在Al2O3-MnO-TiO2的复合氧化质点.微观组织分析与工业验证试验均表明,IF钢热轧薄板边部翘皮缺陷主要是由于中间坯边角部温度过低、热轧过程中发生不均匀变形导致.","authors":[{"authorName":"徐海卫","id":"abf0a3f5-0805-4daf-8726-8824ca5a91d5","originalAuthorName":"徐海卫"},{"authorName":"于洋","id":"12c673e7-3b61-4a38-89a4-15a9e1a087e9","originalAuthorName":"于洋"},{"authorName":"飞","id":"3af995cb-16f4-4ba9-b361-6daa0562830c","originalAuthorName":"李飞"},{"authorName":"朱国森","id":"8dffebda-1514-49c6-806b-5bbb578c61a1","originalAuthorName":"朱国森"},{"authorName":"","id":"82ed4bd3-48bc-4609-9aad-146643771625","originalAuthorName":"李本海"}],"doi":"","fpage":"53","id":"238ff511-35a4-4264-9047-8a9adee360ef","issue":"9","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"847d072c-4222-473f-88a7-931512dbbe13","keyword":"热轧薄板","originalKeyword":"热轧薄板"},{"id":"0e6de3ca-bc95-4eb3-a651-3bad0c43698d","keyword":"IF钢","originalKeyword":"IF钢"},{"id":"38211d58-d54f-46f8-a440-13bc613d016e","keyword":"边部翘皮","originalKeyword":"边部翘皮"}],"language":"zh","publisherId":"gt201209011","title":"IF钢热轧薄板边部翘皮缺陷的产生原因及机制","volume":"47","year":"2012"},{"abstractinfo":"为减少连铸板坯角部横裂纹,在分析连铸坯角部横裂纹形成机制的基础上,提出了通过倒角结晶器减少角部横裂纹,以改变连铸板坯角部的二维传热,提高矫直时连铸坯的角部温度.数值模拟计算的结果表明,相对于直角连铸坯,倒角连铸坯在矫直区连铸坯角部温度明显提高,消除了角部Z向应力和应变集中.工业生产数据表明,采用倒角结晶器后,矫直区连铸坯角部温度从810~855℃提高到901~932℃,有效避开了钢的高温脆性区,连铸坯角部横裂纹发生率从10.6%稳定控制到1.6%以下,显著减少了连铸坯角部横裂纹.目前倒角结晶器稳定应用于首秦,所生产钢种涵盖了普碳钢、低合金钢、低碳钢和中碳含铌钢等.","authors":[{"authorName":"王文军","id":"d42812e9-39d4-4044-a94e-2803451d4089","originalAuthorName":"王文军"},{"authorName":"","id":"6f904b26-f97b-4d7d-b2cb-90644a5b3097","originalAuthorName":"李本海"},{"authorName":"朱志远","id":"a979ad25-dfe5-411f-8697-b8801bfad139","originalAuthorName":"朱志远"},{"authorName":"刘洋","id":"3b7ab09b-f9ee-4241-a798-860f5244b8c5","originalAuthorName":"刘洋"},{"authorName":"王玉龙","id":"8cb15b1b-e064-4916-911f-6134ca54f312","originalAuthorName":"王玉龙"},{"authorName":"关春阳","id":"03050287-de19-4157-aa92-6dbcd77f6297","originalAuthorName":"关春阳"}],"doi":"","fpage":"21","id":"24654a55-7591-4243-b470-690515daca40","issue":"9","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"de686e38-3f48-4839-9fc5-5d4f3e16ed71","keyword":"倒角结晶器","originalKeyword":"倒角结晶器"},{"id":"bafc84fa-1c30-4db5-96ec-aee88ed4fa7e","keyword":"连铸板坯","originalKeyword":"连铸板坯"},{"id":"fe88e027-be7d-448d-8764-64deb4089bd2","keyword":"角部横裂纹","originalKeyword":"角部横裂纹"}],"language":"zh","publisherId":"gtyjxb201209005","title":"板坯连铸倒角结晶器的开发与应用","volume":"24","year":"2012"},{"abstractinfo":"为了研究Al和P合金元素在TRIP钢固态相变过程中的作用,研究了4种不同合金成分C-Mn-Al-P TRIP钢的CCT图.结果表明,Al元素强烈的缩小奥氏体相区,提高A<,c3>与M<,s>.Al元素促使CCT图左移和上移.P元素能够阻碍碳化物的生成,当钢中P含量达到0.14%,能显著的将CCT图中的珠光体区与贝氏体区右移.P元素对铁素体相变和马氏体相变没有显著影响.利用类平衡下切变长大模型估算了4种TRIP钢的B<,s>点(A6钢为567℃,P1钢为556℃,P2钢为514℃,P3钢为548 ℃),与实际测量值吻合较好.研究表明在相同条件下,Al元素降低△μ<'γ→α><,Fe,ch>,即增加相变驱动力,同时还降低△G<'shear><,m,Fe>,即降低切变阻力,提高B.点.P元素增加△G<'shear><,m,Fe>,即增加切变阻力,降低B<,s>点.","authors":[{"authorName":"赵爱民","id":"e621a976-edd0-4a17-bac6-feef8ac9d004","originalAuthorName":"赵爱民"},{"authorName":"张宇光","id":"14130ad1-85f9-403a-88e8-78c53142ab22","originalAuthorName":"张宇光"},{"authorName":"赵征志","id":"fe6d773c-1932-42db-b77b-4c72ff97038e","originalAuthorName":"赵征志"},{"authorName":"张明明","id":"db21684d-fdd7-4c4f-812e-b7d3fca8a9d4","originalAuthorName":"张明明"},{"authorName":"唐荻","id":"75b5597e-64f5-4818-a2b2-41ac515c8878","originalAuthorName":"唐荻"},{"authorName":"","id":"9238dfaa-83f1-4d1c-81bc-c80c3b8f9ad8","originalAuthorName":"李本海"}],"doi":"","fpage":"82","id":"66f02c8a-521d-4165-92dc-62f567bfd5d4","issue":"4","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"15175ce5-1730-46ae-b3d5-986b7ff122d2","keyword":"相变诱发塑性","originalKeyword":"相变诱发塑性"},{"id":"85573e98-1118-4783-9a08-15f3092b3d8f","keyword":"连续冷却转变","originalKeyword":"连续冷却转变"},{"id":"3a27ed8d-f5c1-4376-92b1-672c223672b5","keyword":"相变热力学","originalKeyword":"相变热力学"},{"id":"2b2c3cfc-39a2-49a8-9a68-23c7925f551c","keyword":"贝氏体","originalKeyword":"贝氏体"},{"id":"5140c734-55d4-43e9-96a7-7c797e9009ee","keyword":"铝","originalKeyword":"铝"}],"language":"zh","publisherId":"jsrclxb201104017","title":"Al与P对TRIP钢固态相变的影响","volume":"32","year":"2011"},{"abstractinfo":"根据RH废气分析系统对废气流量及其中CO、CO_2气体含量的测量,建立了废气分析脱碳数学模型.经验证,模型计算值与实际测量值吻合较好.对于成品碳的质量分数小于等于20×10~(-6)的超低碳钢,模型计算的RH自然脱碳终点碳的质量分数误差在士3×10~(-6)之间.废气流量修正系数δ采用分段取值更能符合实际情况,RH精炼开始3min内,δ为0.35,3min后δ为0.6.在RH自然脱碳后期,当废气中CO的质量分数由峰值降低到5%时,钢水中碳的质量分数的平均值达到13×10~(-6),已经低于RH终点碳含量的要求值,可以判定RH脱碳过程结束.","authors":[{"authorName":"刘柏松","id":"bd0f343e-4fa5-457c-a0b2-535b33e2bf0d","originalAuthorName":"刘柏松"},{"authorName":"朱国森","id":"3ec59662-54a2-46c8-950e-8fefce37b7cd","originalAuthorName":"朱国森"},{"authorName":"","id":"4612f443-db35-4a3d-ab46-49f8916e09dd","originalAuthorName":"李本海"},{"authorName":"崔爱民","id":"5c4aee9d-e184-478a-95e8-4e5050123a04","originalAuthorName":"崔爱民"},{"authorName":"李焕喜","id":"e834c7a1-16e0-4ffd-aa46-46ac3ce55b47","originalAuthorName":"李焕喜"}],"doi":"","fpage":"23","id":"745aeeda-64fc-4297-9c28-c6e62542f9eb","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"6b35a7f9-8249-41e5-a237-8c4e8fef780d","keyword":"废气分析","originalKeyword":"废气分析"},{"id":"4083138b-6fad-401c-b817-45a160ef3939","keyword":"RH","originalKeyword":"RH"},{"id":"e58a7e3f-2ca9-4fd1-82d1-1fc5c32e1304","keyword":"数学模型","originalKeyword":"数学模型"},{"id":"c0581b1b-1162-4bc2-b7c4-f2f6c2fe1124","keyword":"超低碳钢","originalKeyword":"超低碳钢"}],"language":"zh","publisherId":"gt201002005","title":"废气分析在RH脱碳过程中的应用","volume":"45","year":"2010"},{"abstractinfo":"利用工业试验,研究了常规RH和RH-TOP精炼处理IF钢的脱碳过程、钢水氧含量、真空室压力、废气流量及成分、钢水温降的变化.根据表观脱碳速率常数的不同,两种精炼方式下脱碳过程分别呈现\"两段式\"和\"三段式\"变化规律,均可以在20min内稳定生产碳质量分数低于15×10-6的IF钢;吹氧使得真空室压降平台处压力升高,平台时间延长,不利于提高脱碳速率,且吹氧过量导致脱碳终点氧含量大幅升高.采用RH-TOP吹氧时,CO的二次燃烧产生的热补偿可以降低转炉出钢温度20~30℃.","authors":[{"authorName":"刘柏松","id":"e3b7d486-fb41-4b15-9431-f9ab29b674c5","originalAuthorName":"刘柏松"},{"authorName":"","id":"8092cabc-cb46-4a56-bae6-246d8dbd9642","originalAuthorName":"李本海"},{"authorName":"朱国森","id":"835b8c58-e090-4055-a07e-4e473d74e8cb","originalAuthorName":"朱国森"},{"authorName":"陈斌","id":"f417ad22-8d97-47bb-8b1a-4c8ec92dd747","originalAuthorName":"陈斌"},{"authorName":"崔爱民","id":"925b81a2-f877-403b-9207-83e6904d3ece","originalAuthorName":"崔爱民"},{"authorName":"李焕喜","id":"c44d5a9a-f91d-4f26-afb2-3280f7b77e16","originalAuthorName":"李焕喜"}],"doi":"","fpage":"33","id":"771a9168-79eb-431d-9483-c1640ab37c1d","issue":"8","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"a95cc353-02e3-487b-9949-b70b033851aa","keyword":"RH","originalKeyword":"RH"},{"id":"80d3113b-5334-48fc-b96a-9b5544af8235","keyword":"RH-TOP","originalKeyword":"RH-TOP"},{"id":"40795bee-e77d-4841-bca1-c715931519d3","keyword":"脱碳","originalKeyword":"脱碳"},{"id":"3c0ae162-a930-44f4-bec5-ab569d4ba183","keyword":"IF钢","originalKeyword":"IF钢"},{"id":"47c559ac-8f9e-4f9c-b72e-0ee77a40a8c3","keyword":"超低碳钢","originalKeyword":"超低碳钢"}],"language":"zh","publisherId":"gt201008008","title":"常规RH和RH-TOP工艺精炼IF钢试验研究","volume":"45","year":"2010"},{"abstractinfo":"为减少连铸板坯角部横裂纹,在分析连铸坯角部横裂纹形成机制的基础上,提出了通过倒角结晶器减少角部横裂纹,以改变连铸板坯角部的二维传热,提高矫直时连铸坯的角部温度。数值模拟计算的结果表明,相对于直角连铸坯,倒角连铸坯在矫直区连铸坯角部温度明显提高,消除了角部Z向应力和应变集中。工业生产数据表明,采用倒角结晶器后,矫直区连铸坯角部温度从810~855℃提高到901~932℃,有效避开了钢的高温脆性区,连铸坯角部横裂纹发生率从10.6%稳定控制到1.6%以下,显著减少了连铸坯角部横裂纹。目前倒角结晶器稳定应用于首秦,所生产钢种涵盖了普碳钢、低合金钢、低碳钢和中碳含铌钢等。","authors":[{"authorName":"王文军","id":"4b3b1761-cd25-49cf-91ba-7f988d720708","originalAuthorName":"王文军"},{"authorName":"","id":"cd7ca52f-2eb2-4897-9372-5bb0a7176ae1","originalAuthorName":"李本海"},{"authorName":"朱志远","id":"47424fa6-c6f2-463c-8a7b-b638bcf86d04","originalAuthorName":"朱志远"},{"authorName":"刘洋","id":"8c5a2030-cf0d-40b4-af14-7a4a0ca7d0da","originalAuthorName":"刘洋"},{"authorName":"王玉龙","id":"ba361d71-a206-4cd5-a110-920ccece38d1","originalAuthorName":"王玉龙"},{"authorName":"关春阳","id":"384b3390-6c7c-46ea-a3b7-00f15fab0645","originalAuthorName":"关春阳"}],"categoryName":"|","doi":"","fpage":"21","id":"80aa3120-d781-4a9d-b114-83dea0e45fd4","issue":"9","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"0d977399-597c-4352-851d-052adaefb461","keyword":"倒角结晶器 ","originalKeyword":"倒角结晶器 "},{"id":"224ba03b-1e61-4b4d-8de2-9c2b7205ecbf","keyword":" continuous casting of slab ","originalKeyword":" continuous casting of slab "},{"id":"de681eae-aaa7-4079-bf53-4a3395fde897","keyword":" transverse corner crack","originalKeyword":" transverse corner crack"}],"language":"zh","publisherId":"1001-0963_2012_9_12","title":"板坯连铸倒角结晶器的开发与应用","volume":"24","year":"2012"},{"abstractinfo":"介绍了首钢高速机车制动梁用钢的连铸工艺过程;阐述了各种因素对连铸坯质量的影响及提高铸坯质量的相关措施;此外,进行了铸坯质量分析及用户使用情况介绍.","authors":[{"authorName":"崔京玉","id":"ae03c9c8-292a-475d-8d0c-a0bf4c9c2907","originalAuthorName":"崔京玉"},{"authorName":"王勇","id":"b1fb1b9a-0a7c-46e7-b8b9-7f725724bdc9","originalAuthorName":"王勇"},{"authorName":"陈京生","id":"c33ea541-dd7e-4054-8aae-3709b4552d99","originalAuthorName":"陈京生"},{"authorName":"","id":"aff5a9c8-060c-4716-8e4d-b693f9fc4318","originalAuthorName":"李本海"},{"authorName":"许晓东","id":"5554c5c6-76e0-4b5b-b8ab-66b8f8f9b0bd","originalAuthorName":"许晓东"}],"doi":"","fpage":"203","id":"94273028-c2cb-4eec-8775-8eed519f49a4","issue":"z1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"0d31052f-4bb3-4339-8afc-79ceb127f517","keyword":"制动梁用钢","originalKeyword":"制动梁用钢"},{"id":"c9778424-e321-46ee-8582-52c95440db5a","keyword":"矩形坯","originalKeyword":"矩形坯"},{"id":"339a7915-d64d-4b11-9bf7-809041fed826","keyword":"连铸工艺","originalKeyword":"连铸工艺"},{"id":"5ccdad0d-3f7a-4cbe-b92a-7ab12e8005ba","keyword":"铸坯质量","originalKeyword":"铸坯质量"}],"language":"zh","publisherId":"gt2004z1047","title":"高速机车制动梁用钢矩形坯连铸工艺实践","volume":"39","year":"2004"},{"abstractinfo":"首钢迁钢2250mm热连轧生产线在2006年底投产后1年多的时间里,带钢的板形控制精度较低,需要进一步提高.粗轧后中间坯存在镰刀弯、负凸度和楔形大的板形问题,导致精轧控制稳定性差,造成板形控制精度较低.为了解决粗轧中间坯板形的问题,在粗轧R2机架上设计并应用了6次多项式变接触支持辊辊形和负凸度工作辊辊形,取代了原来采用的平辊形.此支持辊辊形可以使辊间接触长度随所轧制带钢宽度变化,消除了有害接触区,使得辊间接触应力均匀化,并提高了辊缝横向刚度,改善了轧辊的磨损辊形,并提高了板形调控能力.工作辊负辊形弥补了工作辊的热凸度,增强了板坯轧制过程的对中和稳定性.此支持辊辊形与工作辊辊形配置使用,大幅改善了中间坯的凸度、楔形和镰刀弯等板形质量,使得热轧产品的板形质量有10%左右的提高.","authors":[{"authorName":"王晓东","id":"01eb3928-6c6a-4706-a796-2a8a69c75c42","originalAuthorName":"王晓东"},{"authorName":"飞","id":"0210a897-7652-456f-b863-8852b0e35dbf","originalAuthorName":"李飞"},{"authorName":"","id":"21e5547b-0d8c-45f4-a616-3d15da4e4882","originalAuthorName":"李本海"},{"authorName":"朱国森","id":"94e24593-6cb9-4bc6-8ff7-6ae37bf6fb5b","originalAuthorName":"朱国森"},{"authorName":"金永春","id":"f0e779b9-0c48-4766-bf5c-d48c8e33767f","originalAuthorName":"金永春"}],"doi":"","fpage":"47","id":"95425fd8-f683-43f4-b621-853c6f19e723","issue":"7","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"a01d7338-1db4-486c-ab74-3fa805d92d2e","keyword":"热轧宽带钢","originalKeyword":"热轧宽带钢"},{"id":"fe2bf040-752a-4eab-afe4-d9803d5e814c","keyword":"支持辊","originalKeyword":"支持辊"},{"id":"b229e9b4-f9a2-42e8-a7f4-53da367b606e","keyword":"辊形","originalKeyword":"辊形"},{"id":"0131e0c2-0116-4f7f-9350-f9f800f30ddd","keyword":"辊形配置","originalKeyword":"辊形配置"},{"id":"4277e9f7-2cbc-406c-a9a9-584e707d7272","keyword":"板形","originalKeyword":"板形"}],"language":"zh","publisherId":"gt201007010","title":"变接触支持辊辊形及辊形配置技术在宽带钢热连轧粗轧机组的应用","volume":"45","year":"2010"},{"abstractinfo":"为了实现热轧宽带钢板形的高精度控制,根据宽带钢热连轧精轧机组上游机架控制凸度与下游机架控制平坦度的特性,在首钢迁钢1580 mm热连轧生产线的精轧机组开发并应用了成套辊形配置技术.在F1机架工作辊采用负凸度辊形,加强带钢轧制过程的对中;在F2到F4机架工作辊应用低轴向力CVC辊形,对带钢进行凸度调控;在F5到F7机架工作辊上采用负凸度辊形,辅以长行程的工作辊周期性窜辊,均匀轧辊磨损,控制带钢的平坦度;在所有机架的支撑辊上采用VCR变接触式辊形,增加机架的横向刚度.采用此辊形配置后,带钢的板形控制精度达95%以上,同时,改善了带钢轧制稳定性,延长了轧制计划长度,实现了一定范围的自由规程轧制.","authors":[{"authorName":"王晓东","id":"7b47559a-19f9-4ade-9553-8014f7fc9506","originalAuthorName":"王晓东"},{"authorName":"飞","id":"a559f4db-8c47-446d-8ce2-9eaa7072d1c5","originalAuthorName":"李飞"},{"authorName":"王秋娜","id":"9bd954c9-45ae-45a7-a829-57d45dfd6bc9","originalAuthorName":"王秋娜"},{"authorName":"","id":"72ecd949-e498-4056-8914-189c941d874c","originalAuthorName":"李本海"},{"authorName":"彬","id":"b7a26e78-b4ba-477a-a3cb-825c9fd9d0b4","originalAuthorName":"李彬"}],"doi":"","fpage":"59","id":"98d335b7-214c-4e8a-a0c8-25ec63ac54d0","issue":"1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"d3992e82-662c-4598-98c0-f8b8b0da0fba","keyword":"热连轧机","originalKeyword":"热连轧机"},{"id":"74ab6cfb-136c-4ee5-a557-2deb1d176b2c","keyword":"辊形配置","originalKeyword":"辊形配置"},{"id":"13fc45bf-8f92-44a1-b982-af06db892d41","keyword":"平坦度","originalKeyword":"平坦度"},{"id":"b9e901ab-495e-4c4e-abd1-39633e76b408","keyword":"自由规程轧制","originalKeyword":"自由规程轧制"},{"id":"4e142998-8bbb-4dcd-ba45-2d382aaf7388","keyword":"凸度","originalKeyword":"凸度"}],"language":"zh","publisherId":"gt201301011","title":"宽带钢热连轧精轧机组成套辊形配置技术研究与应用","volume":"48","year":"2013"}],"totalpage":631,"totalrecord":6305}