{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用水热法原位法和浸渍法分别制备了La/SBA-15Fe/La/SBA-15两种SBA-15改性催化剂,两种材料保持了SBA-15材料的高度有序二维六孔结构,并在实验温度范围内具有良好的热稳定性.本文利用松木屑作为生物质原料,讨论了水蒸气流量、实验温度、SBA-15改性催化剂等影响因素对生物质气化过程的影响.一定温度下提高水蒸气流量可促进水蒸气与焦炭反应和焦油的重整反应,降低了焦油和焦炭产量从而提高了产气率;提高温度可以促进焦油的二次裂解;添加La/SBA-15Fe/La/SBA-15两种催化剂可以促进焦油中难分解物质的裂解以及水与焦炭反应的发生.尤其是Fe/La/SBA-15催化剂,一定温度下提高了产气率的同时提高了燃气的热值.","authors":[{"authorName":"张玉黎","id":"65d4bce9-d669-4b17-9d23-f1d1eabf720a","originalAuthorName":"张玉黎"},{"authorName":"肖睿","id":"a7ae623f-68a7-41d2-b91b-1a2911d67b75","originalAuthorName":"肖睿"},{"authorName":"何光莹","id":"a5f5944e-eee0-47b2-a755-a81c289185c0","originalAuthorName":"何光莹"}],"doi":"","fpage":"173","id":"3158bfeb-5eea-4c37-abeb-eb1f694e4d60","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"081b1f76-dea6-4f6b-b83c-24bec82aa9a7","keyword":"生物质","originalKeyword":"生物质"},{"id":"baf81d8f-2866-45fe-b071-0bcf751300ba","keyword":"Fe/La/SBA-15","originalKeyword":"Fe/La/SBA-15"},{"id":"68d1280b-24f6-428d-9093-4c25fb74884c","keyword":"催化气化","originalKeyword":"催化气化"},{"id":"c5689c2d-eeb0-4090-b6c2-b4efe91a3ad2","keyword":"高热值","originalKeyword":"高热值"}],"language":"zh","publisherId":"gcrwlxb201301043","title":"Fe/La/SBA-15对生物质气化影响研究","volume":"34","year":"2013"},{"abstractinfo":"在介绍介孔分子筛SBA- 15改性原理及合成工艺优化研究状况的基础上,从有机基团改性、负载固体酸、金属掺杂及金属化合物掺杂等4个方面详细综述了SBA-15介孔材料在催化领域的应用现状,同时论述了其在吸附、测定与分离、药物输送、制备新材料领域的研究与应用,并展望了SBA-15介孔材料未来的研究方向.","authors":[{"authorName":"宗蒙","id":"14134282-765b-4214-8d5d-ad602a4853e7","originalAuthorName":"宗蒙"},{"authorName":"黄英","id":"de6a065c-9b9a-4d6e-82eb-9641a64284da","originalAuthorName":"黄英"},{"authorName":"赵阳","id":"fe9afc40-c1f8-4c11-baf5-5a4c8ad6d86b","originalAuthorName":"赵阳"}],"doi":"","fpage":"54","id":"d2dadec8-45b4-44ff-a170-6746edb52139","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"65a51052-90f2-4662-8ca0-9a6c0e6f4783","keyword":"SBA-15","originalKeyword":"SBA-15"},{"id":"015850ad-37e1-4061-a406-21d39e972ef2","keyword":"介孔","originalKeyword":"介孔"},{"id":"9373fea4-0ef5-4ebb-867e-187eda6cba94","keyword":"改性","originalKeyword":"改性"},{"id":"752eb876-0ee7-4b73-9857-754ed24307c0","keyword":"催化","originalKeyword":"催化"}],"language":"zh","publisherId":"cldb201217012","title":"SBA-15介孔材料的改性及应用","volume":"26","year":"2012"},{"abstractinfo":"借助水热法,利用三嵌段共聚物聚(1,2-亚乙基二醇)-嵌段-聚(丙二醇)-嵌段-聚(1,2-亚乙基二醇)为模板剂,正硅酸四乙酯为硅源,强酸性条件下制备了分子筛SBA-15.分别以水及水+乙醇为介质采用LaCl3溶液与煅烧的主体材料SBA-15分子筛固-液相交换法,制备了La-(SBA-15)复合材料.利用化学分析、粉末XRD、N2吸附技术、IR评价了制备方法的有效性及对SBA-15分子筛孔结构的影响.结果表明,镧已并入SBA-15分子筛中,SBA-15内表面上的硅羟基团是镧进入的主要位置,部分客体在分子筛孔道内.制得的材料La-(SBA-15)保持高度有序的介孔二维六角结构,不改变载体SBA-15的介孔孔道结构.此外,考察了La-(SBA-15)产物的发光现象.","authors":[{"authorName":"翟庆洲","id":"ead22e8a-1e33-4981-816d-52529b73c4a3","originalAuthorName":"翟庆洲"},{"authorName":"王巍","id":"13e3b30c-e5f8-43e2-926c-1afbb0eba8ee","originalAuthorName":"王巍"},{"authorName":"江天肃","id":"0752bbe5-61d7-4cb2-9474-1aca7a80ff54","originalAuthorName":"江天肃"},{"authorName":"王媛","id":"4c12af13-430b-4ec8-a55e-ef2d8ecb53de","originalAuthorName":"王媛"},{"authorName":"陈明贵","id":"9889e65e-a42a-40e2-85b3-7b9921c0b37d","originalAuthorName":"陈明贵"}],"categoryName":"|","doi":"","fpage":"1212","id":"739ee716-227b-4a34-bc68-54b8dda28e94","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"f926076d-a049-431a-b24e-e06a0623a97a","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"63be65e8-1b61-4c0b-95d5-c95ead434f58","keyword":" SBA-15 molecular sieve modification","originalKeyword":" SBA-15 molecular sieve modification"},{"id":"7716df88-1aa0-488c-b6b8-eaefa86b2eda","keyword":" lanthanum","originalKeyword":" lanthanum"},{"id":"c1596f67-4380-406b-9312-26887aafbeb5","keyword":" characterization","originalKeyword":" characterization"}],"language":"zh","publisherId":"1000-324X_2004_5_24","title":"镧(Ⅲ)对SBA-15分子筛改性研究","volume":"19","year":"2004"},{"abstractinfo":"借助水热法, 利用三嵌段共聚物聚(1, 2-亚乙基二醇)-嵌段-聚(丙二醇)-嵌段-聚(1, 2-亚乙基二醇)为模板剂, 正硅酸四乙酯为硅源, 强酸性条件下制备了分子筛SBA-15.分别以水及水+乙醇为介质采用LaCl3溶液与煅烧的主体材料SBA-15分子筛固-液相交换法, 制备了La-(SBA-15)复合材料.利用化学分析、粉末XRD、N2吸附技术、IR评价了制备方法的有效性及对SBA-15分子筛孔结构的影响.结果表明, 镧已并入SBA-15分子筛中, SBA-15内表面上的硅羟基团是镧进入的主要位置, 部分客体在分子筛孔道内.制得的材料La-(SBA-15)保持高度有序的介孔二维六角结构, 不改变载体SBA-15的介孔孔道结构.此外, 考察了La-(SBA-15)产物的发光现象.","authors":[{"authorName":"翟庆洲","id":"f45eb570-6b63-4dd2-ae25-b2177eb52027","originalAuthorName":"翟庆洲"},{"authorName":"王巍","id":"81604d5c-47c3-4bde-9776-94942e0a25ad","originalAuthorName":"王巍"},{"authorName":"江天肃","id":"356473cb-0e2d-4572-bc0f-4aaf287f124e","originalAuthorName":"江天肃"},{"authorName":"王媛","id":"b12d7f48-dc23-4401-ac1a-3d7e3086a16c","originalAuthorName":"王媛"},{"authorName":"陈明贵","id":"77d043a0-6f2f-4d28-8b5d-161e770310d4","originalAuthorName":"陈明贵"}],"doi":"10.3321/j.issn:1000-324X.2004.05.042","fpage":"1212","id":"d5757d7c-824a-4e94-a58f-3e853da31389","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"73b2973d-aacc-48d7-a840-90853f4a0d5b","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"fa788b5c-0efc-4ce9-b658-60f95bc17be3","keyword":"SBA-15分子筛改性","originalKeyword":"SBA-15分子筛改性"},{"id":"8d2217a9-6db8-408c-9e02-e831e919a417","keyword":"镧","originalKeyword":"镧"},{"id":"3f20b61c-28c8-4575-be99-251652e8c9ae","keyword":"表征","originalKeyword":"表征"}],"language":"zh","publisherId":"wjclxb200405042","title":"镧(III)对SBA-15分子筛改性研究","volume":"19","year":"2004"},{"abstractinfo":"由于硫酸根自由基(SO4?-)的强氧化性,基于SO4?-的高级氧化技术受到人们的高度关注.采用过渡金属活化过一硫酸盐(PMS)产生SO4?-用以分解有机物,反应体系简单,反应条件温和,且不需要额外的能量供给,因此,成为人们优先选用的方法,其中,采用高效、环境友好的非均相过渡金属催化剂活化PMS处理难降解有机物成为研究热点.本文研究了非均相CoFe/SBA-15-PMS体系对水中难降解染料罗丹明B(RhB)的降解.以SBA-15为载体, Co(NO3)2·6H2O和Fe(NO3)3·9H2O为前驱物,采用一步等体积浸渍法制备了CoFe/SBA-15,通过X射线衍射(XRD)、N2吸附-脱附、扫描电镜(SEM)、能谱(EDS)、透射电镜(TEM)和振动样品磁强计(VSM)等对其进行了表征.考察了焙烧温度、Co与Fe的负载量对CoFe/SBA-15催化性能的影响和该催化剂的重复使用性能,还考察了RhB降解动力学及催化剂CoFe/SBA-15投加量、氧化剂PMS投加量和反应物(RhB和PMS)初始浓度对其性能的影响,探讨了RhB的降解机理.结果表明:对于催化剂CoFe/SBA-15,合成焙烧后在SBA-15上负载的Fe、Co化合物主要是CoFe2O4复合物,它作为催化剂的活性中心负载在SBA-15的孔道内外.制备的焙烧温度对CoFe/SBA-15催化性能几乎无影响,但对Co浸出影响显著.与SBA-15相比,催化剂10Co9.5Fe/SBA-15-700(Co和Fe负载量分别为10 wt%和9.5 wt%,焙烧温度700 oC)的比表面积、孔体积和孔径均减小,分别为506.1 m2/g,0.669 cm3/g和7.4 nm,但仍然保持SBA-15的有序六方介孔结构.该催化剂以棒状体的聚集态存在,聚集体直径大于0.25μm,其磁化强度为8.3 emu/g,因此,可通过外磁铁容易地从水中分离.相比之下,10Co9.5Fe/SBA-15-700具有最佳的催化性能和稳定性,可使RhB的降解率达到96%以上, Co的浸出量小于32.4μg/L.在CoFe/SBA-15和PMS共存下, RhB的降解符合一级动力学方程, RhB降解速率随CoFe/SBA-15和PMS投加量的增加和初始反应物浓度的减小而提高.淬灭实验结果表明,在CoFe/SBA-15, PMS和RhB水溶液体系中,存在的主要活性自由基为SO4?-,它是由CoFe/SBA-15活化PMS产生的,对RhB的降解起决定性的作用. RhB降解过程的UV-vis结果表明, RhB的降解途径主要是蒽环打开, SO4?-优先攻击RhB的有色芳香烃环,然后RhB进一步分解为小分子有机物. CoFe/SBA-15循环使用10次仍能保持高催化活性和稳定性,在每次反应中RhB的降解率均大于84%, Co和Fe的浸出量均分别小于72.1和35μg/L. CoFe/SBA-15作为高效、环境友好的非均相催化剂可有效地活化PMS产生SO4?-降解水中RhB,具有实际应用的潜力.","authors":[{"authorName":"胡龙兴","id":"bdedd115-bec4-4839-82d3-88deec2f864e","originalAuthorName":"胡龙兴"},{"authorName":"杨帆","id":"d2a8c1d7-20d1-47d7-9f2b-cfedd726a602","originalAuthorName":"杨帆"},{"authorName":"邹联沛","id":"02abbe72-67ec-4c8b-a44e-772f5f891d13","originalAuthorName":"邹联沛"},{"authorName":"袁航","id":"f831b211-2aaf-422a-88c0-610dc375639c","originalAuthorName":"袁航"},{"authorName":"胡星","id":"606a4ecd-729a-4de0-8531-c1302927a291","originalAuthorName":"胡星"}],"doi":"10.1016/S1872-2067(15)60939-1","fpage":"1785","id":"ee4d6582-225e-4e3a-a614-da7c1f568f43","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"cf38dfed-037f-42b1-90c1-442ae6717501","keyword":"钴","originalKeyword":"钴"},{"id":"695670fd-5865-411b-a97c-38a7d8e335f4","keyword":"铁","originalKeyword":"铁"},{"id":"c157b883-fc9c-4a0e-aa17-5dacae7d35b2","keyword":"SBA-15","originalKeyword":"SBA-15"},{"id":"bdc03a74-042e-499c-9208-f51b7480d28a","keyword":"过一硫酸盐","originalKeyword":"过一硫酸盐"},{"id":"3f7d2854-9e5e-4fee-b6ae-1ba4d72750e8","keyword":"罗丹明B降解,高级氧化技术,硫酸根自由基","originalKeyword":"罗丹明B降解,高级氧化技术,硫酸根自由基"}],"language":"zh","publisherId":"cuihuaxb201510018","title":"Co-Fe/SBA-15与过一硫酸盐联用非均相催化降解水中染料罗丹明B","volume":"","year":"2015"},{"abstractinfo":"在酸性条件下合成了金属杂原子富集的、球形的高度有序的M/SBA-15 (M=A1,Fe,Ni),并利用X射线衍射(XRD)、紫外-可见漫反射(UV-Vis)、高分辨透射电子显微镜(HRTEM)、扫描电子显微镜(SEM)、低温N2吸附脱附等温线和BJH孔径分析等手段对样品进行分析.结果表明,金属的掺入不会改变SBA-15的结构,但会使有序度降低,并令孔道阵列周期参数a0减小,金属离子的种类是影响M/SBA-15有序性的关键因素.在SBA-15中掺入金属离子会促使其形成相对均一的球形粒子,球状物与非球形物质相比含有的金属原子较多,该合成方法下所得样品对杂原子有明显的富集作用.M/SBA-15中大部分的金属元素都进入了SBA-15的骨架,与骨架氧产生了相互作用,同时又有少部分的金属元素以氧化物的形式存在于产物的表面.","authors":[{"authorName":"王青春","id":"5996c7c9-2880-41be-aeaf-73785ff6c38a","originalAuthorName":"王青春"},{"authorName":"安胜利","id":"df03fa5e-5267-46ad-ac22-d8eda6411385","originalAuthorName":"安胜利"},{"authorName":"彭军","id":"f8fb9264-4935-46b5-9944-b316b1e1f43c","originalAuthorName":"彭军"},{"authorName":"刘振朋","id":"628ea973-1b36-4b23-8a68-e6bc6e0ba81a","originalAuthorName":"刘振朋"},{"authorName":"程锦","id":"40470008-37b9-4697-9902-1fd6aacaee75","originalAuthorName":"程锦"}],"doi":"10.11896/j.issn.1005-023X.2016.08.012","fpage":"56","id":"4f079663-d777-4b4a-9625-195ee1d68737","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"fb6cbdea-989d-43cf-9031-10306081f2cb","keyword":"球状","originalKeyword":"球状"},{"id":"37946d8a-b59b-4036-8ae8-829539cc6642","keyword":"杂原子富集","originalKeyword":"杂原子富集"},{"id":"e87ebac4-262e-4fe0-936c-1265de2c02a3","keyword":"M/SBA-15","originalKeyword":"M/SBA-15"},{"id":"3006bce9-b36e-4fa6-88dc-0246d824223d","keyword":"可控合成","originalKeyword":"可控合成"}],"language":"zh","publisherId":"cldb201608012","title":"杂原子富集的球状M/SBA-15(M=Al,Fe,Ni)介孔分子筛的控制合成及表征","volume":"30","year":"2016"},{"abstractinfo":"采用原位聚合法制备了介孔材料/不饱和聚酯(SBA-15/UP)复合树脂,通过X射线衍射(XRD)、氮气吸附-脱附、热重分析(TGA)等表征了SBA-15SBA-15/UP的相关性能,研究了不同SBA-15含量对SBA-15/UP热性能及电性能的影响。结果表明:在原位聚合过程中,SBA-15的有序性降低,其孔径由原来的6.64 nm下降到0.926 nm,表明UP分子链嵌入到SBA-15孔道内形成了有机-无机互穿网络结构;与纯UP相比,添加1%~3%的SBA-15后,SBA-15/UP复合树脂的热稳定性明显提高,其Td5%较纯UP的Td5%均提高了25℃左右。","authors":[{"authorName":"卢凤英","id":"42f728c5-b892-4f71-ace3-965afe5d72f7","originalAuthorName":"卢凤英"},{"authorName":"吕建","id":"7dce8527-7401-42e0-b4e5-805f088c9841","originalAuthorName":"吕建"},{"authorName":"胡舒龙","id":"32add9bf-f760-4933-9499-ebafc876a616","originalAuthorName":"胡舒龙"},{"authorName":"章震","id":"a5a13ed0-92ea-4707-a275-92df35ab8c64","originalAuthorName":"章震"},{"authorName":"刘华山","id":"6def6efa-bed7-4715-b66a-03f23c0a065e","originalAuthorName":"刘华山"},{"authorName":"曾德明","id":"48c18548-462a-44e6-a649-bcde6480f7c0","originalAuthorName":"曾德明"}],"doi":"","fpage":"41","id":"11f4f457-b0b5-4172-a953-2337a228a9b6","issue":"2","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"756cb8fc-ed9f-4448-b8f4-bfaacd97c417","keyword":"介孔材料","originalKeyword":"介孔材料"},{"id":"65ff029d-2ae9-4057-927c-b103313f8388","keyword":"不饱和聚酯","originalKeyword":"不饱和聚酯"},{"id":"9599eeab-7c17-43ee-98fb-46c2cb97d4c7","keyword":"热性能","originalKeyword":"热性能"},{"id":"a09c16f9-67ff-4708-851e-e7a12762bba9","keyword":"电性能","originalKeyword":"电性能"}],"language":"zh","publisherId":"jycltx201402009","title":"SBA-15/不饱和聚酯树脂的制备及其性能研究","volume":"","year":"2014"},{"abstractinfo":"分别采用介孔分子筛SBA-15原位聚合及SBA-15负载催化剂六氯化钨原位聚合的方法制备了SBA-15/聚双环戊二烯(PDCPD)复合材料,研究了SBA-15/PDCPD复合材料的阻燃性能.研究结果表明:采用原位聚合方法制备的复合材料,SBA-15孔道中的双环戊二烯(DCPD)单体难以发生聚合反应生成PDCPD分子链,SBA-15易团聚,导致复合材料的阻燃性能没有明显改善;采用SBA-15负载催化剂原位聚合的方法制备的复合材料,在SBA-15孔道中大量生成PDCPD分子链.SBA-15的孔壁起到隔热作用,延缓介孔内聚合物分子链的热分解,使复合材料的热稳定性明显提高,水平燃烧速率下降,SBA-15与PDCPD的质量比为3:100时,复合材料的极限氧指数由PDCPD的20.1增至21.7,表明SBA-15可提高PDCPD的阻燃性能.","authors":[{"authorName":"陆昶","id":"882f5896-d682-4419-8715-a5cb910a28b2","originalAuthorName":"陆昶"},{"authorName":"刘继纯","id":"3be581aa-9ce5-4873-8ead-38533f51921e","originalAuthorName":"刘继纯"},{"authorName":"刘宪俊","id":"4a2f56af-1f72-4696-878e-f70b9bfec514","originalAuthorName":"刘宪俊"},{"authorName":"张玉清","id":"d4c0e5f3-a0d8-4025-b0b1-0625324e9023","originalAuthorName":"张玉清"}],"doi":"","fpage":"35","id":"87ff5157-5097-49e4-baad-ce047c0b3ecd","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"9ced4ca8-1c1a-41f9-8764-76864bc05424","keyword":"聚双环戊二烯","originalKeyword":"聚双环戊二烯"},{"id":"72ed3e66-85c7-4c58-bf02-aaef8b3380b2","keyword":"介孔分子筛","originalKeyword":"介孔分子筛"},{"id":"45741386-6d8e-4330-b7fd-50b9cd06e2f1","keyword":"负载","originalKeyword":"负载"},{"id":"b0046ffd-9a85-4a31-95ee-eb514668120f","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"8250898b-05a3-4a08-b776-b2674683c539","keyword":"阻燃","originalKeyword":"阻燃"}],"language":"zh","publisherId":"fhclxb201103006","title":"SBA-15/PDCPD复合材料的阻燃性能","volume":"28","year":"2011"},{"abstractinfo":"以SBA-15为载体,采用后修饰法制备了Ag/SBA-15催化剂.XRD和TEM结果表明,金属Ag粒子均匀分散于SBA-15的纳米孔道中,粒子平均大小为4~5 nm.同时,负载金属Ag纳米粒子后,载体的介孔结构仍然能很好地保持.CO催化氧化测试结果表明,Ag/SBA-15具有很高的催化活性,120℃时就能使CO完全氧化.而在富H2气氛下,80℃时CO的转化率达到最大值(48%),此时O2的选择性为28%.高温H2还原是活化Ag/SBA-15的必要步骤.","authors":[{"authorName":"涂彩华","id":"86cd2ed8-2f32-4ffd-b286-5159dbe7052b","originalAuthorName":"涂彩华"},{"authorName":"王爱琴","id":"d2a67696-c77a-4fa0-96ee-4fb9d5ac520d","originalAuthorName":"王爱琴"},{"authorName":"郑明远","id":"35402fd4-f2fc-4753-bb49-ede6e2dad959","originalAuthorName":"郑明远"},{"authorName":"孟云","id":"f1929454-5aa7-4f23-ba24-c49c921d6b65","originalAuthorName":"孟云"},{"authorName":"单继宏","id":"e5e088c9-6283-4844-9a3a-c94e9b2cdae5","originalAuthorName":"单继宏"},{"authorName":"张涛","id":"7c07c6db-637f-4e6e-b8e3-9ff7b2576da8","originalAuthorName":"张涛"}],"doi":"","fpage":"631","id":"b94773bd-a31c-4cef-8778-c6726832c3c6","issue":"8","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"124b24d7-4bbb-4324-9b43-175b7f4419da","keyword":"银","originalKeyword":"银"},{"id":"acbbddf4-b8a0-40c2-9fbe-ce5c46fca875","keyword":"纳米粒子","originalKeyword":"纳米粒子"},{"id":"43eb0b65-29d8-424b-b4ac-df80b3df9089","keyword":"SBA-15","originalKeyword":"SBA-15"},{"id":"437272d7-e56b-4bc5-98cb-b1cbb5fdf468","keyword":"一氧化碳","originalKeyword":"一氧化碳"},{"id":"bed0fc93-19c5-453c-96fb-2f507c6e7542","keyword":"催化氧化","originalKeyword":"催化氧化"}],"language":"zh","publisherId":"cuihuaxb200508003","title":"一种新的高活性CO氧化催化剂Ag/SBA-15","volume":"26","year":"2005"},{"abstractinfo":"介孔材料由于其孔道分布有序且孔径均匀等优点而在固定化酶催化领域引起人们的广泛关注.本文综述了新型介孔材料SBA-15对脂肪酶固定化的研究进展.总结了SBA-15的孔径大小、形貌及等电点等因素对脂肪酶固定化的影响.归纳了SBA-15上三种不同固定化方法的优缺点,并介绍了SBA-15固定化脂肪酶在手性拆分、酯水解、酯合成及转醇化反应等领域的应用.最后提出SBA-15固定化脂肪酶在发展过程中存在的问题以及今后的发展趋势.","authors":[{"authorName":"黄卓楠","id":"415f1455-836e-426d-b1c8-e071497e5ddf","originalAuthorName":"黄卓楠"}],"doi":"","fpage":"1311","id":"e9f7f461-706c-40de-a37c-897a055e954b","issue":"7","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"57c3ff96-3b39-406e-b329-019a29a613a7","keyword":"SBA-15","originalKeyword":"SBA-15"},{"id":"8da78a9f-2cf9-4051-87ab-aede0a64dccc","keyword":"脂肪酶","originalKeyword":"脂肪酶"},{"id":"097eaefd-2f21-43a3-8672-fb60859f5245","keyword":"固定化","originalKeyword":"固定化"},{"id":"8c65b1b1-4aa0-44bb-8f8d-30263d1628dd","keyword":"催化活性","originalKeyword":"催化活性"}],"language":"zh","publisherId":"gsytb201307016","title":"介孔材料SBA-15固定化脂肪酶的研究进展","volume":"32","year":"2013"}],"totalpage":2529,"totalrecord":25288}