欢迎登录材料期刊网

材料期刊网

高级检索

采用电泳沉积在Ti6A14V钛合金表面制备了以生物玻璃(BG)为中间层,BG与氟取代磷灰石(FHA)复合粉末为表层的BG/BG—FHA涂层。通过XRD、SEM、EDS和电子万能力学试验机对BG/BG—FHA复合涂层的物相结构、微观形貌和涂层结合力进行了分析,优化了涂层的热处理制度,并通过模拟体液浸泡实验研究了涂层的体外生物活性。结果表明:涂层经过热处理后玻璃(BG)与钛合金基体发生化学反应,有新相Ti3(PO4)4生成,涂层和基体以化学冶金结合,结合力大于20MPa;优化后涂层的热处理制度为:热处理温度750℃,保温12min,随炉冷却。BG/BG—FHA涂层浸泡后表面形成缺钙的类骨磷灰石,成花瓣状生长,长度为几百纳米,具有优良的生物活性。

BG/BG- FHA composite coatings on the surface of Ti6Al4V alloy, which consist of a biological glass (BG) for the middle layer, BG and F doped hydroxyapatite (FHA) composite powder for the surface layer were prepared by electrophoretic deposition method. The phase composition, microstructure and adhesion of BG/BG- FHA composite coatings were analyzed by XRD, SEM, EDS and electronic universal material testing machine. The ameliorated heat-treatment process was obtained, and the in vitro biological activity was investigated by the soaking experiment in the simulated body fluid (SBF). The results show that a new phase Ti3 (PO4)4 is generated in the interface between BG and Ti6A14V base alloy after the BG/BG - FHA composite coatings were heat- treated appropriately, and the binding mode of the interface is chemically metallurgical bonding, which is higher than 20 MPa. Optimized heat treatment processing parameters are as follows: heat treatment temperature 750℃, holding time 12 rain and furnace cooling. The bone- like calcium deficiency apatite, which grows like petal with several hundred nanometers in length, forms on the surface of BG/BG - FHA coating after soaking, showing excellent biological activity.

参考文献

[1] Rodriguez-Lorenzo L M, Hart J N, Gross K A. Influence of fluorine in the synthesis of apatites: Synthesis of solid solutions of hydroxy-fluorapatite [J]. Biomaterials, 2003, 24(21): 3777-3785.
[2] Suchanek W L, Shuk P, Byrappa K, et al. Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature [J]. Biomaterials, 2002, 23(3): 699-710.
[3] 张 敏, 汪宏斌, 全仁夫, 等. 羟基磷灰石-二氧化锆生物复合材料的制备及其生物相容性 [J]. 复合材料学报, 2006, 23(2): 115-122.
[4] Locardi B, Pazzaglia U E, Gabbi C, et al. Thermal behavior of hydroxyapatite intended for medical applications [J]. Biomaterials, 1993, 14(6): 437-441.
[5] Rintoul L, Wentrup-Byrne E, Suzuki S, et al. FT-IR spectroscopy of fluoro-substituted hydroxyapatite: Strengths and limitations [J]. Journal of Materials Science: Materials in Medicine, 2007, 18(9): 1701-1709.
[6] Gineste L, Gineste M, Ranz X, et al. Degradation of hydroxyapatite, fluorapatite and fluorhydroxyapatite coatings of dental implants in dogs [J]. Journal of Biomedical Materials Research, 1999, 48(3): 224-234.
[7] Jha L J, Best S M, Knowles J C, et al. Preparation and characterization of fluoride-substituted apatites [J]. Journal of Materials Science: Materials in Medicine, 1997, 8(4): 185-191.
[8] Moreno E C, Kresak M, Kane J J, et al. Adsorption of proteins, peptides, and organic acids from binary mixtures onto hydroxylapatite [J]. Langmuir, 1987, 3(4): 511-519.
[9] 姚 亮. 纯钛基体表面电泳沉积羟基磷灰石涂层的研究 . 山东: 山东大学, 2007.
[10] Wei M, Ruys A J, Milthorpe B K, et al. Solution ripening of hydroxyapatite nanoparticles: Effects on electrophoretic deposition [J]. Journal of Biomedical Materials Research, 1999, 45(1): 11-19.
[11] Jarcho M, Bolen C H, Thomas M B, et al. Hydroxylapatite synthesis and characterization in dense polycrystalline form [J]. Journal of Materials Science, 1976, 11(11): 2027-2035.
[12] 陈晓明, 梁 飞. 羟基磷灰石结晶形貌的控制 [J]. 中国陶瓷, 2001, 37(5): 7-9.
[13] Cao W, Hench L L. Bioactive materials [J]. Ceramics International, 1996, 22(6): 493-507.
[14] Pelletier H, Nelea V, Mille P, et al. Nano-scratch study of pulsed laser-deposited hydroxyapatite thin films implanted at high energy with N+ and Ar+ ions [J]. Journal of Materials Science, 2004, 39(13): 4185-4192.
[15] Fernandez-Pradas J M, Cleries L, Martinez E, et al. Influence of thickness on the properties of hydroxyapatite coatings deposited by KrF laser ablation [J]. Biomaterials, 2001, 22(15): 2171-2175.
[16] Cleries L, Martinez E, Fernandez-Pradas J M, et al. Mechanical properties of calcium phosphate coatings deposited by laser ablation [J]. Biomaterials, 2000, 21(9): 967-971.
[17] Oku T, Suganuma K, Wallenberg L R, et al. Structural characterization of the metal/glass interface in bioactive glass coatings on Ti-6Al-4V [J]. Journal of Materials Science: Materials in Medicine, 2001, 12(5): 413-417.
[18] 段友容, 刘科伟. 模拟体液流速对多孔磷酸钙陶瓷表面类骨磷灰石形成的影响 [J]. 航天医学与医学工程, 2002, 15(3): 203-207.
[19] Hench L L, Wheeler D L, Greenspan D C. Molecular control of bioactivity in sol-gel glasses [J]. Journal of Sol-Gel Science and Technology, 1999, 13(1/2/3): 245-249.
[20] Lin D Y, Zhao Y T. Preparation of hydroxyapatite coating deposited on the titanium alloy surface with magnetron sputtering technique [J]. Chinese Journal of Clinical Rehabilitation, 2006, 10(33): 155-158.
[21] 段友容, 吕万新, 王朝元. 在动态模拟体液中致密CaP陶瓷表面形貌对类骨磷灰石层形成的影响研究 [J]. 生物医学工程学杂志, 2002, 19(2): 186-190.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%