欢迎登录材料期刊网

材料期刊网

高级检索

采用分子动力学方法结合流体边界滑移理论对电润湿作用下水在石墨烯表面流动的边界滑移及摩擦特性进行数值模拟和理论分析。采用石墨烯-水Couette剪切模型,获取电润湿作用下和不带电情况下的剪切速率轮廓、石墨烯表面的剪切应力、边界滑移速率、滑移长度及界面摩擦系数,着重研究界面滑移长度和界面摩擦系数与剪切应变率之间的变化。结果表明:当剪切应变率超过临界剪切应变率时,滑移长度迅速增加,且电润湿作用下的临界剪切应变率明显高于不带电情况下的临界剪切应变率,而界面摩擦系数随着剪切应变率的增大而减小;石墨烯电润湿作用明显增强了石墨烯-水界面的摩擦。无论在电润湿作用下还是不带电情况下,石墨烯-水Couette模型中水的黏性系数与剪切应变率无关。

The boundary slip and interfacial friction properties of confined-water flow on two parallel single-layer graphene sheets with a separation of 6 nm under electrowetting conditions were investigated by molecular dynamics simulation and boundary slip the-ory. For both electrowetted and uncharged graphenes, the flow velocity profiles perpendicular to the flow direction, shear stress, boundary slip velocity, slip length and interfacial friction coefficient were obtained with a graphene-water Couette flow model. Re-sults show that the slip length increases abruptly when the shear rate is above a critical value. The critical shear rate in the elec-trowetted graphenes is obviously larger than that in uncharged ones. The interfacial friction coefficient between graphene and water decreases with the shear rate and is increased by electrowetting the graphenes. The water viscosity is independent of the shear rate in both eletrowetted and uncharged graphenes.

参考文献

[1] Novoselov K S;Geim A K;Morozov S V et al.Electric field effect in atomically thin carbon films[J].SCIENCE,2004,306(5696):666-669.
[2] Geim AK;Novoselov KS .The rise of graphene[J].Nature materials,2007(3):183-191.
[3] Changgu Lee;Xiaoding Wei;Jeffrey W. Kysar;James Hone .Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J].Science,2008(5887):385-388.
[4] Avouris P;Chen ZH;Perebeinos V .Carbon-based electronics[J].Nature nanotechnology,2007(10):605-615.
[5] Novoselov KS;Jiang Z;Zhang Y;Morozov SV;Stormer HL;Zeitler U;Maan JC;Boebinger GS;Kim P;Geim AK .Room-temperature quantum Hall effect in graphene.[J].Science,2007(5817):1379-0.
[6] Balandin AA;Ghosh S;Bao WZ;Calizo I;Teweldebrhan D;Miao F;Lau CN .Superior thermal conductivity of single-layer graphene[J].Nano letters,2008(3):902-907.
[7] 杨全红."梦想照进现实"--从富勒烯、碳纳米管到石墨烯[J].新型炭材料,2011(01):1-4.
[8] 胡耀娟,金娟,张卉,吴萍,蔡称心.石墨烯的制备、功能化及在化学中的应用[J].物理化学学报,2010(08):2073-2086.
[9] Chae HK;Siberio-Perez DY;Kim J;Go Y;Eddaoudi M;Matzger AJ .A route to high surface area, porosity and inclusion of large molecules in crystals[J].Nature,2004(6974):523-527.
[10] Nomura K;MacDonald AH .Quantum Hall ferromagnetism in graphene[J].Physical review letters,2006(25):6602-1-6602-4-0.
[11] Majumder M;Chopra N;Andrews R et al.Nanoscale hydro-dynamics:enhanced flow in carbon nanotubes[J].NATURE,2005,438(7604):44.
[12] Holt JK;Park HG;Wang YM;Stadermann M;Artyukhin AB;Grigoropoulos CP;Noy A;Bakajin O .Fast mass transport through sub-2-nanometer carbon nanotubes[J].Science,2006(5776):1034-1037.
[13] Joseph S;Aluru NR .Why are carbon nanotubes fast transporters of water?[J].Nano letters,2008(2):452-458.
[14] Thomas JA;McGaughey AJH .Reassessing fast water transport through carbon nanotubes[J].Nano letters,2008(9):2788-2793.
[15] John A. Thomas;Alan J. H. McGaughey .Water Flow in Carbon Nanotubes: Transition to Subcontinuum Transport[J].Physical review letters,2009(18):129-132.
[16] Falk, K.;Sedlmeier, F.;Joly, L.;Netz, R.R.;Bocquet, L. .Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction[J].Nano letters,2010(10):4067-4073.
[17] Ma M D;Shen L M;Sheridan J et al.Friction of water slip-ping in carbon nanotubes[J].Physical Review E,2011,83(03):036316.
[18] H. W. Zhang;Z. Q. Zhang;L. Wang;Y. G. Zheng;J. B. Wang;Z. K. Wang .Pressure control model for transport of liquid mercury in carbon nanotubes[J].Applied physics letters,2007(14):144105-1-144105-3-0.
[19] Hans W.Horn;William C.Swope;Jed W.Pitera;Jeffry D.Madura;Thomas J.Dick;Greg L.Hura;Teresa Head-Gordon .Development of an improved four-site water model for biomolecular simulations:TIP4P-Ew[J].The Journal of Chemical Physics,2004(20):9665-9678.
[20] Steve P .Fast parallel algorithms for short-range molecular dy-namics[J].Journal of Computational Physics,1995,117(01):1-19.
[21] Allen M P;Tildesley D J.Computer Simulation of Liquids[M].Clarendon Press,Oxford,1987
[22] Cao BY;Chen M;Guo ZY .Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2006(6 Pt.2):6311-1-6311-7-0.
[23] Thompson P A;Troian S M .A general boundary conditions for liquid flow at solid surfaces[J].NATURE,1997,389(6649):360-362.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%