欢迎登录材料期刊网

材料期刊网

高级检索

采用沉淀-煅烧法制备了F掺杂HA的FHA(Ca_(10)(PO_4)_6(OH)_(2-2x)F_(2x),0≤x≤1)粉末.通过X射线衍射(XRD)、热重分析(TG)、高温膨胀仪,扫描电镜(SEM),能谱仪(EDS)以及模拟体液浸泡实验研究了F掺杂对FHA高温热稳定性,高温烧结性能,热膨胀系数和生物活性的影响.结果表明,F掺杂能够提高FHA的高温热稳定性,且随F掺杂量增加,其稳定性逐渐提高;少量F(x=0.25)掺杂提高了HA基体的烧结致密度,随F含量增加(x>0.25),烧结致密度下降;F掺杂能降低FHA高温热膨胀系数(CET),随着F含量的增加,FHA的CET值减小.类骨磷灰石在块体表面的生长能力为FHA>HA>FA,其中x=0.5和0.75的FHA具有最好的生物活性.

FHA(Ca_(10)(PO_4)_6(OH)_(2-2x)F_(2x),0<x<1) powders were synthesized by wet precipitation-calcination method.XRD,TG,high-temperature dilatometer,SEM,EDS and SBF experiment were used to investigated the influences of F doping on the thermal stability and sintering properties of high temperature,thermal expansion coefficient,and bioactivity of FHA.The results show that doping F improves the thermal stability of FHA at high temperature,and the stability can be gradually improved with the inrease of F content;Sintering density of FHA bulk increases with small amount of F doping (x=0.25),but decreases when F doping content more than x=0.25.Thermal expansion coefficient(CET) of FHA decreases with the increase of F content.The growth ability of bone-like apatite forming on FHA bulk surface proved by the SBF soaking experiment is :FHA>HA>FA,and both F0.5HA and F0.75HA have the best bioactivity.

参考文献

[1] Wang J;Chao Y;Wan Q et al.[J].Journal of Materials Science:Materials in Medicine,2009,20(05):1047-1055.
[2] Chen Y;Miao X .Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents.[J].Biomaterials,2005(11):1205-1210.
[3] Lugscheider E;Knepper M;Heimberg B et al.[J].Journal of Materials Science:Materials in Medicine,1994,5(6-7):371-375.
[4] Okazaki M;Miake Y;Tohda H;Yanagisawa T;Matsumoto T;Takahashi J .Functionally graded fluoridated apatites.[J].Biomaterials,1999(15):1421-1426.
[5] Pullen L J;Gross K A .[J].Journal of Materials Science:Materials in Medicine,2005,16(05):399-404.
[6] Wang Y;Zhang S;Zeng X;Ma LL;Khor KA;Qian M .Initial attachment of osteoblastic cells onto sol-gel derived fluoridated hydroxyapatite coatings.[J].Journal of biomedical materials research, Part A,2008(3):769-776.
[7] Wang J;Chao Y;Wan Q .Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition.[J].Acta biomaterialia,2009(5):1798-1807.
[8] Wei M;Ruys AJ;Milthorpe BK;Sorrell CC .Solution ripening of hydroxyapatite nanoparticles: effects on electrophoretic deposition.[J].Journal of biomedical materials research, Part B. Applied biomaterials,1999(1):11-19.
[9] Jarcho M;Bolen C H;Thomas M B et al.[J].Journal of Materials Science,1976(11):2027-2035.
[10] Okazaki M;Tohda H;Yanagisawa T;Taira M;Takahashi J .Differences in solubility of two types of heterogeneous fluoridated hydroxyapatites.[J].Biomaterials,1998(7/9):611-616.
[11] Ruys AJ.;Sorrell CC.;Dickson MR.;Brandwood A.;Milthorpe BK.;Wei M. .SINTERING EFFECTS ON THE STRENGTH OF HYDROXYAPATITE[J].Biomaterials,1995(5):409-415.
[12] Gross K A;Rodriguez-Lorenzo L M .[J].BIOMATERIALS,2004,25(7-8):1385-1394.
[13] Juang HY.;Hon MH. .EFFECT OF CALCINATION ON SINTERING OF HYDROXYAPATITE[J].Biomaterials,1996(21):2059-2064.
[14] Breme J.;Groh L.;Zhou Y. .DEVELOPMENT OF A TITANIUM ALLOY SUITABLE FOR AN OPTIMIZED COATING WITH HYDROXYAPATITE[J].Biomaterials,1995(3):239-244.
[15] Jiang G;Shi D .[J].Journal of Biomedical Materials Research,1998,43(01):77-81.
[16] Zhang S;Xianting Z;Yongsheng W et al.[J].Surface and Coatings Technology,2006,200(22-23 SPEC.ISS):6350-6354.
[17] Weng W;Zhang S;Cheng K et al.[J].Surface and Coatings Technology,2003,167(2-3):292-296.
[18] Lee EJ;Lee SH;Kim HW;Kong YM;Kim HE .Fluoridated apatite coatings on titanium obtained by electron-beam deposition[J].Biomaterials,2005(18):3843-3851.
[19] Cheng, K;Zhang, S;Weng, WJ;Khor, KA;Miao, SD;Wang, YS .The adhesion strength and residual stress of colloidal-sol gel derived beta-tricalcium-phosphate/fluoridated-hydroxyapatite biphasic coatings[J].Thin Solid Films,2008(10):3251-3255.
[20] 郑冀;梁辉;马卫兵.材料物理性能[M].天津:天津大学出版社,2008:207.
[21] Chu C;Zhu J;Yin Z et al.[J].Materials Science and Engineering A,2003,348(1-2):244-250.
[22] Bloyer D R;Gomez-Vega J M;Saiz E et al.[J].Acta Materialia,1999,47(15):4221-4224.
[23] Kim HM;Himeno T;Kokubo T;Nakamura T .Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid.[J].Biomaterials,2005(21):4366-4373.
[24] 段友容 .骨诱导Ca、P系陶瓷材料中类骨磷灰石层的形成、表征和体外动态研究模型的初步建立[D].四川大学,2002.
[25] Cheng K;Weng W;Qu H et al.[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials,2004,69(01):33-37.
[26] Cheng K;Weng WJ;Wang HM;Zhang S .In vitro behavior of osteoblast-like cells on fluoridated hydroxyapatite coatings[J].Biomaterials,2005(32):6288-6295.
[27] Cerruti MG;Greenspan D;Powers K .An analytical model for the dissolution of different particle size samples of Bioglass((R)) in TRIS-buffered solution[J].Biomaterials,2005(24):4903-4911.
[28] Cerruti M;Greenspan D;Powers K .Effect of pH and ionic strength on the reactivity of Bioglass((R)) 45S5.[J].Biomaterials,2005(14):1665-1674.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%