欢迎登录材料期刊网

材料期刊网

高级检索

利用单辊熔体快淬法在大气环境中制备了Fe73.5-xCoxSi13.5B9Cu1Nb3(x=10,30,50)非晶薄带,利用差示扫描量热法(DSC)研究了非晶薄带的晶化动力学行为。采用Kissinger和Ozawa方法计算了非晶薄带的晶化表观激活能,计算结果表明:随着Co含量的增加,一次晶化的表观激活能降低而二次晶化的表观激活能升高。利用Johnson-Mehl-Avrami(JMA)模型计算了非晶薄带一次晶化的局域Avrami指数m,计算结果表明非晶薄带一次晶化的机理在不同的晶化阶段是不一样的,晶化初期为扩散控制的三维形核和晶粒生长的整体晶化,晶化中后期为一维形核和晶粒生长的表面晶化,形核率近似为零。研究了Fe63.5Co10Si13.5B9Cu1Nb3纳米晶粉芯的磁性与球磨时间之间的关系,结果表明:纳米晶粉芯的有效磁导率表现出较好的频率稳定性,而且随着球磨时间的增加而减小,品质因子在低频范围内随着频率的增加而增加,在约80 kHz达到峰值,然后随着频率的进一步增加而逐渐减小。

Amorphous Fe73.5-xCoxSi13.5B9Cu1Nb3(x=10,30,50) ribbons were prepared by the single copper wheel melt spinning technique in the air atmosphere.The nanocrystallization kinetics of amorphous ribbons was investigated by differential scanning calorimetry(DSC).The apparent activation energies of amorphous ribbons were calculated by using Kissinger and Ozawa methods.It was found that the activation energies of the first crystallization reduce and those of the second crystallization rise with increasing Co content.The local Avrami parameter m for primary crystallization was calculated using Johnson-Mehl-Avrami(JMA) model.The values of the Avrami parameter showed that the primary crystallization mechanism of amorphous ribbons varied at different stages.In the initial stage,the crystallization mechanism was bulk crystallization with three dimensional nucleation and grain growth controlled by diffusion.In the following stage,it was surface crystallization with one dimensional nucleation and grain growth at a near zero nucleation rate.The variation of soft magnetic properties of nanocrystalline Fe63.5Co10Si13.5B9Cu1Nb3 powder cores as a function of milling time has been investigated.It was found that the effective permeability of the cores shows high frequency stability and decreases with increasing milling time.The quality factor increases with increasing frequency in the lower frequency range,reaches a maximum at the frequency of 80 kHz,and then decreases gradually with increasing frequency.

参考文献

[1] Y.Yoshizawa;S.Oguma;K.Yamauchi .[J].Journal of Applied Physics,1988,64:6044-6046.
[2] 杨磊;严彪;陈成澍 .铁基非晶和纳米晶Fe73.3Cu1Nb1.5W1.7Si13.5B9合金的显微硬度分析[J].上海钢研,2004,3:3-5.
[3] 王伟 .FeCuNbSiB与FeSiB非晶/纳米晶软磁粉芯制备及性能研究[D].中南大学,2009.
[4] G.Herzer .Crystalline size dependence of coercivity andpermeability in nanocrystalline ferromagnets[J].IEEE Transactions on Magnetics,1989,25:3327-3329.
[5] 韩献堂,王治,马晓华,王光建.Fe39.4-xCo40Si9B9Nb2.6Cux纳米晶合金的有效磁各向异性研究[J].物理学报,2007(03):1697-1701.
[6] 胡晓英,王治,王光建,贝洁,周严,郝延明.(Fe0.5 Co0.5)73.5 Cu1 Mo3 Si13.5 B9合金高温磁性的研究[J].功能材料与器件学报,2006(03):169-172.
[7] 马晓华,王治,王光建.(Fe1-xCox)78.4Nb2.6Si9B9Cu1纳米晶软磁合金的结构与高频磁性[J].金属学报,2007(03):281-285.
[8] C. Li;X. Tian;X. Chen .Crystallization behavior of co-containing FINEMET amorphous alloy melt-spun ribbon[J].Materials Letters,2006(3):309-312.
[9] 黎阳,陆伟,严彪.FINEMET合金晶化行为的DSC研究[J].材料科学与工程学报,2006(01):132-134.
[10] 丁燕红,王治,马叙,韩文仲,张宝峰,张杰,赵占雄.(Fe50Co50)73.5Cu1Nb3Si13.5B9合金的微观结构及软磁性能[J].功能材料,2004(z1):666-668,671.
[11] 支起铮,王继杰,刘伟德,陈文智.(FeCo)73.5Cu1Nb3S15.5B7纳米晶合金晶化过程的研究[J].功能材料,2004(z1):556-557.
[12] 郭晓雷,张罡,党淑娥,胡勇,夏兰廷.Fe73.5Cu1Nb2Si13.5B9Ni1非晶合金的晶化动力学研究[J].太原科技大学学报,2010(03):202-206.
[13] H.E.Kissinger .Reaction kineticsin differential thermal analysis[J].Analytical Chemistry,1957,29(11):1702-1706.
[14] T.OZAWA .[J].Journal of Thermal Analysis,1970,2(03):301-324.
[15] Y. Yoshizawa;S. Fujii;D. H. Ping;M. Ohnuma;K. Hono .Magnetic properties of nanocrystalline FeMCuNbSiB alloys (M: Co, Ni)[J].Scripta materialia,2003(7):863-868.
[16] J.M.Christian.The theory of transformations in metals andalloys[M].New York:Pergamon Press,1975
[17] J.Malek .The applicability of Johnson-Mehl-Avrami model inthe thermal analysis of the crystallization kinetics of glasses[J].Thermochi mica Acta,1995,267(01):61-73.
[18] Frederic Mazaleyrat;Valerie Leger;Richard Lebourgeois;Richard Barrue .Permeability of Soft Magnetic Composites From Flakes of Nanocrystalline Ribbon[J].IEEE Transactions on Magnetics,2002(5):3132-3134.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%